TILENGA PROJECT ESIA -APPENDIX H: Air Quality

May 2018

This page has intentionally been left blank to allow for double sided printing

Table of Contents

Annex	1: AER	MOD Sensitivity Test	5
	A.1	Introduction	5
	A.2	Methodology	5
	A.3	Results	5
Annex	Annex 2: Meteorological Data Sensitivity Test		
	A.4	Introduction	8
	A.5	Method	8
	A.6	Results	8
Annex	3 Base	line Data Collection 1	1
	A.7	Baseline Monitoring 1	1

Annex 1

Annex 1: AERMOD Sensitivity Test

A.1 Introduction

The main assessment reported in the Air Quality Chapter uses the dispersion modelling software ADMS 5. This software was selected because of its functionality, which also allows model runs using US Environmental Protection Agency approved AERMOD model, through the ADMS 5 interface. This appendix describes a sensitivity analysis that was undertaken to compare the ADMS 5 model output with the AERMOD output.

A.2 Methodology

The sensitivity analysis focuses on a single scenario (Op2b), and the model inputs between the ADMS model run and the AERMOD model run were identical and as reported in Air Quality Chapter. The AERMOD function in ADMS does not allow for the quantification of averaging periods of less than 1 hour, nor the consideration of the ADMS chemistry module. Therefore the comparison of model output considers pollutants with averaging periods of 1 hour and above and predicted NO_X contributions without chemistry.

A.3 Results

The comparison of results predicted using different dispersion methods is summarised in Table 6-A1. The table shows that for the model parameters selected, the ADMS 5 method of predicting dispersion impacts consistently over-predicted impacts at the worst affected offsite receptor locations compared to the AERMOD method of predicting dispersion impacts.

There is limited published material available on any comparison between the two models, but professional experience suggests that ADMS tends to predict higher concentrations at locations close to modelled sources, but lower concentrations at locations further away from the modelled sources. The worst case offsite impacts reported in the main chapter and Table 6-A1 concern the nearest receptors to the Central Processing Facility.

Meteorological Year	NOx (Cond	e. μg/m³)	PM10 (Con	с. µg/m³)	ΡΜ2.5 μg/m³)	(Conc.	с. CO (Conc. µg/m³) HC		HCs
	Annual mean	Daily Mean	Annual mean	Daily Mean	Annual mean	Daily Mean	8 Hr Mean	Hourly Mean	Daily Mean
Scenario Op2b	Scenario Op2b								
ADMS 5	10.8	472.0	1.3	9.1	1.3	9.1	63.9	157.6	10.0
AERMOD	5.7	265.4	0.6	3.7	0.6	3.7	29.2	88.6	3.0
Comparison (AERMOD / ADMS 5)	53%	56%	47%	40%	47%	40%	46%	56%	30%

Table A1-1: Predicted Pollutant Concentration Impacts for Controlled Operational Emissions – Dispersion Model Sensitivity

Annex 2

Annex 2: Meteorological Data Sensitivity Test

A.4 Introduction

The main assessment reported in the Air Quality Chapter uses a hybrid meteorological dataset, which amalgamates periods of data gathered near to the Project area in 2014 with data for the remaining periods from Entebbe Airport. This sensitivity analysis considers the impact of the proposed development using multiple years of meteorological data.

A.5 Method

The sensitivity analysis focuses on a single scenario (Op2b), and the model inputs between the ADMS model run and the AERMOD model run, other than the meteorological data, were identical and as reported in Air Quality Chapter.

A.6 Results

The comparison of results predicted using different meteorological years is summarised in Table 6-B1. The table shows that impacts at the worst affected location (i.e. maximum offsite impacts) differ to those reported in the main assessment for this scenario. This is likely due to the more localised conditions incorporated in the amalgamated data. This can be seen in Figure 6-5 of the main assessment. The wind rose plot for the amalgamated data does not share the periods in the Entebbe wind roses where, for a good proportion of hours, winds are blown from the north. Instead, during these periods, wind conditions closer to the Project site blow from other direction, notably the south east.

By applying the worst alternative meteorological year for each pollutant, scenario Op2b would have a negligible magnitude of impact for all averaging periods for CO and a low magnitude of impact for annual mean and hourly mean concentrations of NO₂ and annual mean concentrations of PM₁₀. There would be a moderate adverse magnitude of impact for annual mean and daily mean concentrations of PM_{2.5}. For annual mean concentration of PM₁₀, ambient concentrations are such the receptor sensitivity is moderate. For daily mean PM_{2.5}, ambient concentrations are such the receptor sensitivity is low. The impact significance for both of these pollutants would be moderate-low. For annual mean PM_{2.5}, ambient concentrations are such the receptor sensitivity is moderate at the worst affected offsite receptor location. However, the impact significance reported here for PM_{2.5} impacts are considered conservative for the following reasons:

- Receptor sensitivity has been determined by the concentrations of PM_{2.5} monitored during the baseline survey. Baseline concentrations for all particulate sizes measured during the survey were elevated, due to the naturally dusty conditions often experienced within the region, rather than due to combustion, industry or urban emissions sources.
- Plant suppliers do not publish emissions data for PM_{2.5}. Instead, the emissions data for PM₁₀ that is published has been used as a proxy to represent PM_{2.5}. In reality, only a proportion of the PM₁₀ emissions will be as PM_{2.5}, so actual impacts will be less than those reported in Table 6-B1.

In light of the assumptions above, the moderate-low and moderate impacts reported in Table 6-B1 would be considered to represent a low impact significance, which is insignificant.

Meteorological Year	NO₂ (Conc. μg/m³)		РМ₁₀ (Conc. µg/m³)		PM _{2.5} (Conc. μg/m³)		CO (Conc. µg/m³)			
	Annual mean	Daily Mean	Annual mean	Daily Mean	Annual mean	Daily Mean	8 Hr Mean	Hourly Mean	30 Min Mean	15 Min Mean
Scenario Op2b (Com	parison (Ent	ebbe data /	amalgamat	ed data) giv	ven as a %)					1
2014 Amalgamated dataset	5.1	26.1	1.3	9.1	1.3	9.1	63.9	157.6	161.1	162.9
2012 Entebbe	7.23	39	2	8.7	2	8.7	58.5	175.6	188.2	195.5
	1.4%	1.5%	1.5%	1.0%	1.5%	1.0%	0.9%	1.1%	1.2%	1.2%
2013 Entebbe	8.24	43.11	2.5	11.6	2.5	11.6	90.1	162	164.9	166.5
	1.6%	1.7%	1.9%	1.3%	1.9%	1.3%	1.4%	1.0%	1.0%	1.0%
2014 Entebbe	8.46	33.14	2.3	11.3	2.3	11.3	64.2	157.6	161.1	162.9
	1.7%	1.3%	1.8%	1.2%	1.8%	1.2%	1.0%	1.0%	1.0%	1.0%
2015 Entebbe	8.85	39.23	2.6	11.1	2.6	11.1	66.9	149.8	153.1	154.8
	1.7%	1.5%	2.0%	1.2%	2.0%	1.2%	1.0%	1.0%	1.0%	1.0%
2016 Entebbe	9.56	32.84	2.7	10.1	2.7	10.1	69.2	129.6	130.9	131.6
	1.9%	1.3%	2.1%	1.1%	2.1%	1.1%	1.1%	0.8%	0.8%	0.8%

Table A2-1: Predicted Pollutant Concentrations for Controlled Operational Emissions – Meteorological Sensitivity

Annex 3

Annex 3 Baseline Data Collection

A.7 Baseline Monitoring

The baseline air quality environment, at locations within and around the Study Area, was quantified using a variety of techniques. The field measurements being undertaken comprised:

- Long term passive monitoring of monthly and representative annual average concentrations of NO_x, NO₂, SO₂, O₃ and VOCs (Benzene), using Palmes diffusion tube devices;
- Short term passive monitoring of 24 hour average concentrations of NO₂, SO₂, and H₂S, using Radiello diffusion tube devices; and
- Short term (15 minute and 1 hour averages) monitoring of particulate matter <10 micrometers (PM₁₀) and
 <2.5 micrometers (PM_{2.5}) and Total Suspended Particulate (TSP) using a portable handheld light scattering device.

The Palmes diffusion tubes (vertically held plastic tubes illustrated in Figure 1)were setup and then left in situ to monitor monthly mean concentrations of NO_X, NO₂, SO₂, O₃ and VOCs (Benzene).

The Radiello samplers (horizontally held absorbant tubes illustrated in Figure 1) were setup to measure short-term concentrations of NO₂, SO₂ and H₂S (24 hour mean).

Figure 1. Palmes Diffusion tube and Radiello samplers monitoring ambient air quality at AQ3.

A non-passive method was used to monitor short-term concentrations of particulate matter (1 hour mean and 15 minute mean), as TSP, PM₁₀ and PM_{2.5}, using an electronic light-scattering device as shown in Figure 2 (Turnkey DustMate). The calibration certificate for this device is presented in Figure 3.

Figure 3. DustMate Calibration Certificate for the period 05/10/2016 - 05/10/2017

Dust Monitor Service/Calibration Certificate

Instrument Details	Calibration	No: 10947
Customer: AECOM		
Instrument: DustMate	Serial Number: DM12198	Software Version: D3.04
Date of Last Service: N/A	Date Suppli	ied New: 05/10/2016

Calibration Factors prior to Servicing					
Measured Flow Rate:	N/A	ce/min	Total pump useage:	N/A	hours
TSP: 1,0	PM10: 1.0	1	PM2.5: 1.0	PM1.0:	1.0
Inhalable; /	Thoracic: /		Respirable: /	PM2.0:	1

Fault Report:

New Instrument.

Work Carried Out:				
Calibratio	on.			
	Cha	rge battery 🗹. Chang	ge reference filte	r 🗹.
Photometer Scale 2125	Laser current 26 mA	Flow rate 600 cc/min	Stray light 0	mV
Wind inputs OK	External inputs OK	Inlet Heater OK	Alarm output OK	
Clean-Air filter OK	Backup-Filter OK	PC-Link OK	Telemetry OK	X

Parts Required:

None.

1	nstrument Calibra reading is wit	tion against Refe h new calibration fac	rence Instrumen	t
Fraction	Zero	Reading	Reference	New Cal. Factor
TSP	0.0µg/m^3	300.1 µg/m^3	309.2 µg/m^3	1
PM10	0.0µg/m^3	296.4 µg/m^3	301.8 µg/m^3	1
PM2.5	0.00 µg/m^3	270.99 µg/m^3	252.55 us/m^3	1
PM1.0	0.00 µg/m^3	54.48 ug/m^3	58.66 up/m^3	1
Reference Instrume	ent: TNO2126	Dute Refer	ence Calibrated:	10/06/16

Signed: Terry Sandbach

Date: 05/10/2016

Temperature: 21.7 °C

Calibration Due: 05/10/2017

QF031 Issue 02 Jan 2010

Torakey Instruments Ltd 1 Dalby Court, Gadbrook Business Centre, Northwich, Cheshire CW9 7TN Tel: 01606 330020 Fax: 01606 331526 www.uorukey-instruments.com

TILENGA PROJECT ESIA -APPENDIX I: Noise and Vibration

May 2018

This page has intentionally been left blank to allow for double sided printing

Table of Contents

Appendix I1.	Secondary Noise Survey Data Summaries	7
Appendix I2.	Site Preparation and Enabling Works Results	24
Appendix I3.	Construction and Pre-Commissioning Phase Noise Contour Plots	105
Appendix I4.	Commissioning and Operation Noise Contour Plots	190
Appendix I5.	Commissioning and Operation Noise Contour Plots	229

Figures

Figure I2-1: Industrial Area Site Preparation and Enabling Works Daytime Noise Contours	24
Figure I2-2: Industrial Area Site Preparation and Enabling Works Receptor Analysis	25
Figure I2-3: Well Pad Site Preparation and Enabling Works Daytime Noise Contours	26
Figure I2-4: GNA-01 Site Preparation and Enabling Works Daytime Receptor Analysis	27
Figure I2-5: GNA-02 Site Preparation and Enabling Works Daytime Receptor Analysis	28
Figure I2-6: GNA-03 Site Preparation and Enabling Works Daytime Receptor Analysis	29
Figure I2-7: GNA-04 Site Preparation and Enabling Works Daytime Receptor Analysis	30
Figure I2-8: JBR-01 Site Preparation and Enabling Works Daytime Receptor Analysis	31
Figure I2-9: JBR-02 Site Preparation and Enabling Works Daytime Receptor Analysis	32
Figure I2-10: JBR-03 Site Preparation and Enabling Works Daytime Receptor Analysis	33
Figure I2-11: JBR-04 Site Preparation and Enabling Works Daytime Receptor Analysis	34
Figure I2-12: JBR-05 Site Preparation and Enabling Works Daytime Receptor Analysis	35
Figure I2-13: JBR-06 Site Preparation and Enabling Works Daytime Receptor Analysis	36
Figure I2-14: JBR-07 Site Preparation and Enabling Works Daytime Receptor Analysis	37
Figure I2-15: JBR-08 Site Preparation and Enabling Works Daytime Receptor Analysis	38
Figure I2-16: JBR-09 Site Preparation and Enabling Works Davtime Receptor Analysis	39
Figure I2-17: JBR-10 Site Preparation and Enabling Works Davtime Receptor Analysis	40
Figure I2-18: KGG-01 Site Preparation and Enabling Works Daytime Receptor Analysis	41
Figure I2-19: KGG-03 Site Preparation and Enabling Works Davtime Receptor Analysis	42
Figure I2-20: KGG-04 Site Preparation and Enabling Works Davtime Receptor Analysis	43
Figure I2-21: KGG-05 Site Preparation and Enabling Works Davtime Receptor Analysis	44
Figure I2-22: KGG-06 Site Preparation and Enabling Works Davtime Receptor Analysis	45
Figure 12-23: KGG-09 Site Preparation and Enabling Works Daytime Receptor Analysis	
Figure I2-24: KW-01 Site Preparation and Enabling Works Daytime Receptor Analysis	
Figure 12-25: KW-02A Site Preparation and Enabling Works Daytime Receptor Analysis	48
Figure 12-26: KW-02B Site Preparation and Enabling Works Daytime Receptor Analysis	49
Figure I2-27 NGR-01 Site Preparation and Enabling Works Daytime Receptor Analysis	50
Figure 12-28: NGR-02 Site Preparation and Enabling Works Daytime Receptor Analysis	
Figure 12-29: NGR-03A Site Preparation and Enabling Works Daytime Recentor Analysis	
Figure 12-20: NGR-05A Site Preparation and Enabling Works Daytime Receptor Analysis	02
Figure 12-31: NGR-06 Site Preparation and Enabling Works Daytime Receptor Analysis	50
Figure 12-32: NSO-01 Site Preparation and Enabling Works Daytime Receptor Analysis	55
Figure 12-32: NSO-02 Site Preparation and Enabling Works Daytime Receptor Analysis	56
Figure 12-34: NSO-03 Site Preparation and Enabling Works Daytime Receptor Analysis	57
Figure 12-35: NSO-04 Site Preparation and Enabling Works Daytime Receptor Analysis	58
Figure 12-36: NSO-05 Site Preparation and Enabling Works Daytime Receptor Analysis	50
Figure 12-30: NSO-06 Site Preparation and Enabling Works Daytime Receptor Analysis	60
Figure 12-37: NSO-00 Site Freparation and Enabling Works Daytime Neceptor Analysis	00
Figure 12-30: Road Construction Desenter Analysis – Road A1	01 62
Figure 12-39. Road Construction Receptor Analysis – Road A1	02 63
Figure 12-40. Road Construction Receptor Analysis – Road A1	05 64
Figure 12-41. Road Construction Receptor Analysis – Road A2	04
Figure 12-42. Road Construction Receptor Analysis - Road A2	00 66
Figure 12-43. Road Construction Receptor Analysis - Road A2	00
Figure 12-44. Road Construction Receptor Analysis - Road A4.	07
Figure 12-40. Road Construction Receptor Analysis - Road A4	00
rigure 12-40. Road Construction Receptor Analysis – Road B1	69

Figure I2-47: Road Construction Receptor Analysis – Road B2	. 70
Figure I2-48: Road Construction Receptor Analysis – Road C1	. 71
Figure I2-49: Road Construction Receptor Analysis – Road C2	. 72
Figure I2-50: Road Construction Receptor Analysis – Road C3	. 73
Figure I2-51: Road Construction Receptor Analysis – Road D1	. 74
Figure I2-52: Road Construction Receptor Analysis – Road D10	. 75
Figure I2-53: Road Construction Receptor Analysis – Road D11	. 76
Figure I2-54: Road Construction Receptor Analysis – Road D11 (alternative route)	. //
Figure 12-55: Road Construction Receptor Analysis – Road D12	. /8
Figure 12-50. Road Construction Receptor Analysis – Road D15	. 79
Figure 12-57. Road Construction Receptor Analysis – Road D14	. OU Q1
Figure 12-50: Road Construction Receptor Analysis – Road D15	.01 .82
Figure 12-60: Road Construction Receptor Analysis – Road D17	83
Figure 12-61: Road Construction Receptor Analysis – Road D18	. 84
Figure 12-62' Road Construction Receptor Analysis – Road D19	.85
Figure I2-63: Road Construction Receptor Analysis – Road D19 (alternative route).	. 86
Figure I2-64: Road Construction Receptor Analysis – Road D2	. 87
Figure I2-65: Road Construction Receptor Analysis – Road D20	. 88
Figure I2-66: Road Construction Receptor Analysis – Road D22	. 89
Figure I2-67: Road Construction Receptor Analysis – Road D23	. 90
Figure I2-68: Road Construction Receptor Analysis - Road D24	. 91
Figure I2-69: Road Construction Receptor Analysis – Road D25	. 92
Figure I2-70: Road Construction Receptor Analysis – Road D26	. 93
Figure I2-71: Road Construction Receptor Analysis – Road D27	. 94
Figure I2-72: Road Construction Receptor Analysis – Road D3	. 95
Figure I2-73: Road Construction Receptor Analysis – Road D5	. 96
Figure I2-74: Road Construction Receptor Analysis – Road D6	. 97
Figure I2-75: Road Construction Receptor Analysis – Road D8	. 98
Figure I2-76: Road Construction Receptor Analysis – Road D9	. 99
Figure I2-77: Road Construction Receptor Analysis – Road N1	100
Figure 12-78: Road Construction Receptor Analysis – Road N2	101
Figure 12-79: Road Construction Receptor Analysis – Road N3	102
Figure 12-60. Road Construction Receptor Analysis – Road W L.	105
Figure 13-2: GNA-01 Night-time Well Pad Drilling Receptor Analysis	105
Figure 13-2: GNA-01 Night-time Well Pad Drilling Receptor Analysis	100
Figure 13-4: GNA-03 Night-time Well Pad Drilling Receptor Analysis	108
Figure 13-5: GNA-04 Night-time Well Pad Drilling Receptor Analysis	109
Figure I3-6: JBR-01 Night-time Well Pad Drilling Receptor Analysis	110
Figure I3-7: JBR-02 Night-time Well Pad Drilling Receptor Analysis	111
Figure I3-8: JBR-03 Night-time Well Pad Drilling Receptor Analysis	112
Figure I3-9: JBR-04 Night-time Well Pad Drilling Receptor Analysis	113
Figure I3-10: JBR-05 Night-time Well Pad Drilling Receptor Analysis	114
Figure I3-11: JBR-06 Night-time Well Pad Drilling Receptor Analysis	115
Figure I3-12: JBR-07 Night-time Well Pad Drilling Receptor Analysis	116
Figure I3-13: JBR-08 Night-time Well Pad Drilling Receptor Analysis	117
Figure I3-14: JBR-09 Night-time Well Pad Drilling Receptor Analysis	118
Figure I3-15: JBR-10 Night-time Well Pad Drilling Receptor Analysis	119
Figure I3-16: KGG-01 Night-time Well Pad Drilling Receptor Analysis	120
Figure I3-17: KGG-03 Night-time Well Pad Drilling Receptor Analysis	121
Figure 13-18: KGG-04 Night-time Well Pad Drilling Receptor Analysis	122
Figure 13-19: NGG-05 Night-time Well Pad Drilling Receptor Analysis.	123
Figure 13-20. KGG-00 Night-time Well Pad Drilling Receptor Analysis.	ו∠4 125
Figure 13-21. KGG-09 Night-time Well Pad Drilling Receptor Analysis	120
Figure 13-23: KW-02A Night-time Well Pad Drilling Receptor Analysis	127
Figure I3-24: KW-02B Night-time Well Pad Drilling Recentor Analysis	128
Figure I3-25: NGR-01 Night-time Well Pad Drilling Receptor Analysis	129
Figure I3-26: NGR-02 Night-time Well Pad Drilling Receptor Analysis	130
	-

Figure I3-27: NGR-03A Night-time Well Pad Drilling Receptor Analysis	. 131
Figure 13-28: NGR-05A Night-time Well Pad Drilling Receptor Analysis	132
Figure 13-20: NGR-06 Night time Well Pad Drilling Recentor Analysis	133
Figure 13-23. NGN-00 Night-time Well Pad Drilling Receptor Analysis	124
Figure 13-30: NSO-01 Night-time Well Pad Drilling Receptor Analysis	125
Figure 13-51. NSO-02 Night-time Well Pad Drilling Receptor Analysis	100
Figure 13-32. NSO-03 Night-time Well Pad Drilling Receptor Analysis	. 130
Figure 13-33: NSO-04 Night-time Well Pad Drilling Receptor Analysis	. 137
Figure 13-34: NSO-05 Night-time Well Pad Drilling Receptor Analysis	. 138
Figure I3-35: NSO-06 Night-time Well Pad Drilling Receptor Analysis	. 139
Figure I3-36: Production and Injection Network Construction Daytime Noise Contours	. 140
Figure I3-37: Production and Injection Network Construction Receptor Analysis – CNA-01 to CPF	. 141
Figure I3-38: Production and Injection Network Construction Receptor Analysis – GNA-02 to GNA-04	. 142
Figure I3-39: Production and Injection Network Construction Receptor Analysis – GNA-04 to GNA-01	. 143
Figure I3-40: Production and Injection Network Construction Receptor Analysis - GNA-04 to GNA-03	. 144
Figure I3-41: Production and Injection Network Construction Receptor Analysis – JBR-01 to HDD Crossing	
(option 1)	. 145
Figure I3-42: Production and Injection Network Construction Receptor Analysis – JBR-02 to JBR-01	. 146
Figure I3-43: Production and Injection Network Construction Receptor Analysis – JBR-03 to JBR-01	. 147
Figure 13-44: Production and Injection Network Construction Receptor Analysis – JBR-04 to JBR-03	148
Figure 13-45: Production and Injection Network Construction Recentor Analysis – IBR-05 to IBR-03	149
Figure 13-46: Production and Injection Network Construction Receptor Analysis – UBR-06 to UBR-05	150
Figure 12-40: Production and Injection Network Construction Receptor Analysis – JBR-00 to JBR-00	151
Figure 13-47. Floquetion and Injection Network Construction Receptor Analysis – JBR-07 to JBR-06	150
Figure 13-48: Production and Injection Network Construction Receptor Analysis – JBR-08 to JBR-07	. 152
Figure 13-49: Production and Injection Network Construction Receptor Analysis – JBR-09 to JBR-08	. 153
Figure I3-50: Production and Injection Network Construction Receptor Analysis – JBR-10 to JBR-01	. 154
Figure I3-51: Production and Injection Network Construction Receptor Analysis – JBR-10 to HDD Crossing	
(option 2)	. 155
Figure I3-52: Production and Injection Network Construction Receptor Analysis – KGG-01 to KGG-04	. 156
Figure I3-53: Production and Injection Network Construction Receptor Analysis – KGG-03 to KGG-01	. 157
Figure I3-54: Production and Injection Network Construction Receptor Analysis - KGG-04 to NSO-04	. 158
Figure I3-55: Production and Injection Network Construction Receptor Analysis - KGG-05 to NSO-02	. 159
Figure I3-56: Production and Injection Network Construction Receptor Analysis - KGG-06 to KGG-04	. 160
Figure I3-57: Production and Injection Network Construction Receptor Analysis - KGG-09 to KGG-04	. 161
Figure I3-58: Production and Injection Network Construction Receptor Analysis – KW-01 to KW-02A	. 162
Figure I3-59: Production and Injection Network Construction Receptor Analysis – KW-02A to KW-02B	. 163
Figure I3-60: Production and Injection Network Construction Receptor Analysis – KW-02B to NGR-06	164
Figure 13-61: Production and Injection Network Construction Receptor Analysis – NGR-02 to NGR-01	165
Figure 13-62: Production and Injection Network Construction Receptor Analysis – NGR 02 to NGR 07.	166
Figure 12-62: Production and Injection Network Construction Receptor Analysis – NCR-05A to CDE	167
Figure 13-05. Floquetion and Injection Network Construction Receptor Analysis – NGR-05A to CFF	. 107
Figure 13-64: Production and Injection Network Construction Receptor Analysis – NGR-06 to NGR-05A	. 108
Figure 13-65: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to	400
	. 169
Figure I3-66: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to	
CPF – alternative route	. 170
Figure I3-67: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to	
HDD Crossing (option 1)	. 171
Figure I3-68: Production and Injection Network Construction Receptor Analysis - HDD Crossing (option 2) to	
CPF via NGR-01	. 172
Figure I3-69: Production and Injection Network Construction Receptor Analysis - HDD Crossing (option 2) to	
HDD Crossing (option 2)	. 173
Figure I3-70: Production and Injection Network Construction Receptor Analysis – NS0-01 to NS0-05	. 174
Figure I3-71: Production and Injection Network Construction Receptor Analysis – NS0-02 to NS0-06	. 175
Figure 13-72' Production and Injection Network Construction Recentor Analysis – NS0-03 to CPF	176
Figure 13-73: Production and Injection Network Construction Recentor Analysis – NSO-04 to NSO-03	177
Figure 13-74: Production and Injection Network Construction Recentor Analysis – NGO-04 to NGO-03	179
Figure 12-74. Froduction and Injection Network Construction Receptor Analysis – NSO-03 to NSO-04.	. 1/0
Figure 13-75. Froduction and Injection Network Construction Receptor Analysis – INSU-06 (0 NSU-01	. 1/9
Figure 13-76. Production and injection Network Construction Receptor Analysis – water station to KW-02B	. 100
Figure 13-77: Bugungu Airstrip Noise Contours for US Runway Operations	. 181
Figure 13-78: Victoria Nile HDD Drilling – North Side	. 182
Figure I3-79: Victoria Nile HDD Drilling – South Side	. 183

Figure I3-80: Option 1 Victoria Nile HDD Drilling Receptor Analysis – South Side	. 184
Figure I3-81: Option 1 Victoria Nile HDD Drilling Receptor Analysis – North Side	. 185
Figure I3-82: Option 2 Victoria Nile HDD Drilling Receptor Analysis – South Side	. 186
Figure I3-83: Option 2 Victoria Nile HDD Drilling Receptor Analysis – North Side	. 187
Figure I4-1: CPF Option 1 Commissioning and Operation Noise Contours	189
Figure I4-2: CPF Option 2 Commissioning and Operation Noise Contours	190
Figure I4-3: CPF Options Commissioning and Operation Night-time Receptor Analysis	. 191
Figure I4-4: Well Pad Commissioning and Operation Noise Contours	192
Figure I4-5: GNA-01 Commissioning and Operation Receptor Analysis	193
Figure I4-6: GNA-02 Commissioning and Operation Receptor Analysis	. 194
Figure I4-7: GNA-03 Commissioning and Operation Receptor Analysis	195
Figure I4-8: GNA-04 Commissioning and Operation Receptor Analysis	. 196
Figure I4-9: JBR-01 Commissioning and Operation Receptor Analysis	. 197
Figure I4-10: JBR-02 Commissioning and Operation Receptor Analysis	. 198
Figure I4-11: JBR-03 Commissioning and Operation Receptor Analysis	. 199
Figure I4-12: JBR-04 Commissioning and Operation Receptor Analysis	200
Figure I4-13: JBR-05 Commissioning and Operation Receptor Analysis	. 201
Figure I4-14: JBR-06 Commissioning and Operation Receptor Analysis	202
Figure I4-15: JBR-07 Commissioning and Operation Receptor Analysis	203
Figure I4-16: JBR-08 Commissioning and Operation Receptor Analysis	204
Figure I4-17: JBR-09 Commissioning and Operation Receptor Analysis	205
Figure I4-18: JBR-10 Commissioning and Operation Receptor Analysis	206
Figure I4-19: KGG-01 Commissioning and Operation Receptor Analysis	207
Figure I4-20: KGG-03 Commissioning and Operation Receptor Analysis	208
Figure I4-21: KGG-04 Commissioning and Operation Receptor Analysis	209
Figure I4-22: KGG-05 Commissioning and Operation Receptor Analysis	. 210
Figure I4-23: KGG-06 Commissioning and Operation Receptor Analysis	. 211
Figure I4-24: KGG-09 Commissioning and Operation Receptor Analysis	. 212
Figure I4-25: KW-01 Commissioning and Operation Receptor Analysis	. 213
Figure I4-26: KW-02A Commissioning and Operation Receptor Analysis	. 214
Figure I4-27: KW-02B Commissioning and Operation Receptor Analysis	. 215
Figure I4-28: NGR-01 Commissioning and Operation Receptor Analysis	216
Figure I4-29: NGR-02 Commissioning and Operation Receptor Analysis	. 217
Figure I4-30: NGR-03A Commissioning and Operation Receptor Analysis	. 218
Figure I4-31: NGR-05A Commissioning and Operation Receptor Analysis	. 219
Figure I4-32: NGR-06 Commissioning and Operation Receptor Analysis	. 220
Figure I4-33: NSO-01 Commissioning and Operation Receptor Analysis	. 221
Figure I4-34: NSO-02 Commissioning and Operation Receptor Analysis	. 222
Figure I4-35: NSO-03 Commissioning and Operation Receptor Analysis	. 223
Figure I4-36: NSO-04 Commissioning and Operation Receptor Analysis	. 224
Figure I4-37: NSO-05 Commissioning and Operation Receptor Analysis	. 225
Figure I4-38: NSO-06 Commissioning and Operation Receptor Analysis	. 226
Figure I5.1: Emergency Flaring Noise Contours	. 228
Figure I5.2: Emergency Flaring Receptor Analysis	229

Tables

Table I1-1: Secondary Data: Summary of available noise measurements performed by othe	er consultants north of
the Victoria Nile	7
Table I1-2: Secondary Data: Summary of available noise measurements performed by othe	er consultants south of
the Victoria Nile	
Table I1-3: Secondary Data: Summary of available noise measurements performed by othe	er consultants west of
the Victoria Nile	

Appendix I1: Secondary Noise Survey Data

Appendix I1. Secondary Noise Survey Data Summaries

Table I1-1: Secondary Data: Summary of available noise measurements performed by other consultants north of the Victoria Nile

Source of information	Sampling locations	Measured	d noise le	vels dB((A) (B)					Noise sources	Site Description	Summary of the
(TEP Uganda)	Victoria Nile	L _{AMax}	L _{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
		_ (B)	37.9	34.5	36.3	40	-	-	-	Birds, hippos, aircraft (distant)	Bush camping site near Delta point, about 20m from water's edge.	Overall, noise levels
DE/ENV/2013/2/ 053 Proposed Along the Victoria Victoria Nile 3D Seismic Surveys conducted in February 2013.	-	43.2	37.2	38.8	-	-	-	-	Birds, hippos and frogs	Fringing wetland off Buligi Track.	observed during the study were typical of noise expected in a rural and wilderness	
	-	43.7	36.5	41.1	-	-	-	-	Birds, hippos, frogs, bushbuck, boats (n. 3) and vehicles.	At 5m from water's edge near Paraa ferry crossing.	setting. L_{eq} at all locations north of the Nile was within the permissible limits	
	-	-	-	-	-	71.3	-	-	Pick-up transit.	Packwach Highway	Both natural (fauna) and anthropogenic	
2013		-	-	-	-	-	66.1	-	-	Mini bus transit.	Packwach Highway	baseline; although noise levels were
		-	-	-	-	-	76.7	-	-	Two pick-ups transit.	Packwach Highway	generally higher where human
		-	-	-	-	-	73	-	-	Fuso truck transit.	Packwach Highway	significantly higher.
		-	-	-	-	-	57.5	-	-	Two pick-ups transit.	Packwach Highway	
	Openalised	-	-	-	-	-	57.45	-	-	-		In general the baseline
DE/ENV/2012/R/ 048	based on proximity	-	-	-	-	-	57.55	-	-	-		exceeded the
048 to sensitive receptors as we	to sensitive receptors as well as	-	-	-	-	-	57.65	-	-	-	Around Jobi East-	permissible noise levels for
Drilling: Jobi	the location of the proposed drill pads.	-	-	-	-	-	57.8	-	-	-	7 (F) site.	environmental and recreational
East Field, January 2013 proposed drill pads. Surveys conducted in December 2012.	Surveys conducted	-	-	-	-	-	57.75	-	-	-		areas whose
	-	-	-	-	-	57.8	-	-	-		at 45dB (A) during the	

Source of information	Sampling locations	Measured noise levels dB(A) (B)								Noise sources	Site Description	Summary of the
(TEP Uganda)	Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
		-	-	-	-	-	57.8	-	-	-		day, according to the National Environment
		-	-	-	-	-	57.85	-	-	-		(Noise Standards and
		-	-	-	-	-	57.85	-	-	-		2003) but were as a
		-	-	-	-	-	58.1	-	-	Recurring thunder.	Access road Junction to Jobi East-7 (F) drill pad.	wind blowing through vegetation.
		-	-	-	-	-	57.85	-	-	-		In general the baseline noise levels recorded
		-	-	-	-	-	57.9	-	-	-		exceeded the permissible noise levels for environmental and recreational areas whose permissible level is set at 45dB (A) during the day, according to the
		-	-	-	-	-	57.9	-	-	-		
		-	-	-	-	-	57.3	-	-	-	Around Jobi East-	
		-	-	-	-	-	56.85	-	-	-		
		-	-	-	-	-	57.15	-	-	-	G site.	
		-	-	-	-	-	56.7	-	-	-		(Noise Standards and
		-	-	-	-	-	57	-	-	-		Control Regulations 2003) but were
		-	-	-	-	-	57.05	-	-	-		partially influenced by birds calls, wind
		-	-	-	-	-	56.8	-	-	-		blowing through vegetation.
		-	-	-	-	-	57.95	-	-	-		In general the baseline
		-	-	-	-	-	58	-	-	-		exceeded the
		-	-	-	-	-	57.85	-	-	-		permissible noise levels for
	-	-	-	-	-	58.1	-	-	-	Around Jobi East- 6 (I) site.	environmental and recreational areas	
	-	-	-	-	-	58.05	-	-	-		recreational areas whose permissible level is set at 45dB (A) during the day,	
	-	-	-	-	-	57.95	-	-	-			
		-	-	-	-	-	57.9	-	-	-		National Environment

Source of information	Sampling locations	Measured	easured noise levels dB(A) (B)							Noise sources	Site Description	Summary of the
(TEP Uganda)	Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
		-	-	-	-	-	57.9	-	-	-		(Noise Standards and Control Regulations
		-	-	-	-	-	58.05	-	-	-		2003) but were
		-	-	-	-	-	58	-	-	-		windy conditions.
		-	73.2	56.3	68.5	77.8	-	-	-	Birds and insects.		Noise sources identified during the time of measurements
DE/ENV/2012/R/ 012 Proposed Jobi-5 (E) Appraisal Well, January 2013	The locations chosen within approximately 100 m of the well site centre.	-	76.4	50.7	69.4	81.4	-	-	-	Birds and insects.	Around Jobi-5 (E).	were non- anthropogenic (birds and insects). The background noise levels exceeded the maximum permissible noise levels for 'environmental or recreational sites' specified in the National Environment (Noise Standards and Control) Regulations, 2003.
		-	-	-	-	-	56	-	-	-		
		-	-	-	-	-	57	-	-	-		
	Sampling point	-	-	-	-	-	57	-	-	-	-	
DE/ENV/2012/R/	located in the proximity to sensitive	-	-	-	-	-	57.1	-	-	-		The average noise
041 Proposed Jobi-2	receptors (i.e. wildlife) as well as	-	-	-	-	-	56.7	-	-	-	Around Jobi 2.	similar to other
well testing, October 2012	the location of the proposed drill pad.	-	-	-	-	-	56.7	-	-	-]	within the MFNP for
	Surveys conducted in July 2012.	-	-	-	-	-	56.9	-	-	-		other studies
		_	-	-	-	-	57	-	-	-		
		_	-	-	-	-	57.4	-	-	-		
		-	-	-	-	-	57.2	-	-	-		

Source of information	Sampling locations north of the	Measured	d noise le	vels dB((A) (B)					Noise sources	Site Description	Summary of the
(TEP Uganda)	Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
		-	-	-	-	-	56.9	-	-	-		
		-	-	-	-	-	56.8	-	-	-	1	
		-	-	-	-	-	57	-	-	-		
		-	-	-	-	-	57.1	-	-	-		
		-	-	-	-	-	56.6	-	-	-		
		-	-	-	-	-	56.9	-	-	-		
		-	-	-	-	-	56.9	-	-	-		
	-	-	-	-	-	57.3	-	-	-	Along the access road to Jobi 2.		
		-	-	-	-	-	57.6	-	-	-	Along the access road to Jobi 2.	
		-	-	-	-	-	57.2	-	-	-		
		-	-	-	-	-	57.2	-	-	-		
		-	-	-	-	-	56.9	-	-	-		
DE/ENV/2012/R/	Ambient noise measuring points	-	-	-	-	-	57.2	-	-	-		The average noise
0.12	were taken at the Jobi East-2 site and	-	-	-	-	-	57.2	-	-	-	Around Jobi East-	levels logged are similar to other
Proposed Jobi East-2 well testing, October 2012 Jobi East-2 site and the access road to the site. Surveys conducted in July 2012.	-	-	-	-	-	57.3	-	-	-	2.	measurements made	
	Surveys conducted	-	-	-	-	-	57.4	-	-	-		other studies.
	in July 2012.	-	-	-	-	-	57.4	-	-	-		
		-	-	-	-	-	57.4	-	-	-		
		-	-	-	-	-	56.8	-	-	-		
		-	-	-	-	-	57.2	-	-	-		

Source of information	Sampling locations	Measured	d noise le	vels dB	(A) (B)					Noise sources	Site Description	Summary of the	
(TEP Uganda)	Victoria Nile	L _{AMax}	L _{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results	
		-	-	-	-	-	56.9	-	-	-			
		-	-	-	-	-	57.1	-	-	-			
		-	-	-	-	-	56.9	-	-	-			
		-	-	-	-	-	56.9	-	-	-			
		-	-	-	-	-	56.5	-	-	-			
		-	-	-	-	-	56.9	-	-	-			
		-	-	-	-	-	57	-	-	-	Junction of access road to Jobi East- 2.		
The amb	The ambient noise	-	-	-	-	-	76.6	-	-	Decommissioning activities within existing	Existing Jobi-3 (D) drill pad site, 15 m from the onsite generator which was in operation.		
DE/ENV/2012/R/ 043 Proposed Appraisal Drilling: Jobi 6	their proximity to sensitive receptors (i.e. wildlife) as well as the location of the	-	-	-	-	-	61.6	-	-	activities within existing Jobi-3 (D) drill pad site (no rig activities).	At the drill pad entrance (existing Jobi-3 (D) drill pad site).	The average noise levels logged are similar to other measurements made	
(F), November 2012	ppraisal rilling: Jobi-6 F), November 012 as the location of the drill pad and along the existing access road to the drill pad. Surveys conducted in July 2012.	-	-	-	-	-	65.9	-	-		Existing Jobi-3 (D) drill pad site, at the onsite offices.	within the MFNP for other studies.	
in Jul		-	-	-	-	-	57.3	-	-	Decommissioning activities within existing Jobi-3 (D) drill pad site (no rig activities).	Existing Jobi-3 (D) drill pad site, at the borehole.		
DE/ENV/2012/0 47 Proposed Appraisal Drilling: Mpyo	Ambient background noise measurement points based on proximity to sensitive receptors as well as	-	-	-	-	-	59.6	-	-	-	50 m West of proposed Mpyo-4 (F) drill pad.	The high values are due to the wind blowing at the time the noise measurements were taken.	

Source of information	Sampling locations	ons Measured noise levels dB(A) (B)							Noise sources	Site Description	Summary of the	
(TEP Uganda)	Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Мах	Min			available results
Field (north area), December 2012	the location of the proposed pads: at every 50 and 100 m along the cardinal directions, outside	-	-	-	-	-	60.3	-	-	-	100 m West of proposed Mpyo-4 (F) drill pad.	
the proposed drill pad locations, and long the proposed access road route and on the main Paraa-Pakwach road, which forms a junction with the proposed drill pad access roads. Surveys conducted on 5 th July and 23 rd November 2012.	-	-	-	-	-	60.5	-	-	-	50 m East of proposed Mpyo-4 (F) drill pad.	According to the Noise	
	-	-	-	-	-	60.3	-	-	-	100 m East of proposed Mpyo-4 (F) drill pad.	standard and control Regulations (2003), baseline noise levels	
	-	-	-	-	-	64.3	-	-	-	50 m North of proposed Mpyo-4 (F) drill pad.	recorded exceeded the permissible noise levels for environmental and	
	-	-	-	-	-	60.4	-	-	-	100 m North of proposed Mpyo-4 (F) drill pad.	recreational areas set at 45dB (A) during the day.	
		-	-	-	-	-	64.1	-	-	-	50 m South of proposed Mpyo-4 (F) drill pad.	
		-	-	-	-	-	65.5	-	-	-	100 m South of proposed Mpyo-4 (F) drill pad.	
	-	-	-	-	-	63.4	-	-	-	Access road approaching Drill pad.		
	-	-	-	-	-	59.9	-	-	-	200 m North of proposed Mpyo-2 (H) drill pad.	Results are similar to other measurements in MFNP.	
		-	-	-	-	-	55.4	-	-	-	250 m West of proposed Mpyo-2 (H) drill pad.	-2 According to the Noise standard and control Regulations (2003),
	-	-	-	-	-	55.3	-	-	-	300 m West of proposed Mpyo-2 (H) drill pad.	baseline noise levels recorded exceeded the permissible noise	

Source of information	Sampling locations	Measured	l noise lev	/els dB((A) (B)					Noise sources	Site Description	Summary of the
(TEP Uganda)	Victoria Nile	L _{AMax}	L _{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
		-	-	-	-	-	58.2	-	-	-	250 m East of proposed Mpyo-2 (H) drill pad.	levels for environmental and recreational areas set at 45dB (A) during the day.
		-	-	-	-	-	56.9	-	-	-	300 m East of proposed Mpyo-2 (H) drill pad.	
		-	-	-	-	-	57.9	-	-	-	250 m North of proposed Mpyo-2 (H) drill pad.	
		-	-	-	-	-	57.7	-	-	-	300 m North of proposed Mpyo-2 (H) drill pad.	
	-	-	-	-	-	58	-	-	-	100 m from the proposed Mpyo-2 (H) H drill pad.		
		-	-	-	-	-	58	-	-	-	50 m from the proposed Mpyo-2 (H) drill pad.	
		-	-	-	-	-	57.4	-	-	-	Access road point to proposed Mpyo- 2 (H) drill pad.	
		-	-	-	-	-	57	-	-	-	Point off the Paraa-Pakwach road.	
HOGL/004-08 Hartebeest-1 Onshore Oil Exploration Well - Pura-1 onshore exploration oil well, August 2008	No information about the location.	-	-	-	-	-	56.7	58.3	55.1	Natural background conditions (birds, insects and crickets).	Hartebeest-1 well site location.	No information
TUL /ECO/11/EI A-11 Proposed Jobi- Rii Field	Sampling points within approximately 100 m of each well site centre.	-	-	-	-	-	59.05	65.8	52.3	-	Jobi-4 (C).	The maximum recorded noise levels at both locations exceed both the

Source of information	Sampling locations north of the	Measured	I noise lev	vels dB((A) (B)			Noise sources Site Descriptio		Summary of the		
(TEP Uganda)	Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) (A)	Max	Min			available results
Appraisal Drilling, January 2012		-	-	-	-	-	62.25	67.9	56.6	-		daytime legislated limits for environmental or recreational sites
		-	-	-	-	-	62.1	70.1	54.1	-		is attributable to 'natural' background conditions (birds and insects) since no
		-	-	-	-	-	65.9	72.3	59.5	-	Jodi-3 (D).	anthropogenic sources of noise were observed in the area at the time of monitoring.

Source of	Sampling locations	Measured	l noise le	vels dB(A) ^(B)							
information (TEP Uganda)	south of the Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Site Description	Summary of the available results
		- (B)	46	35.9	38.2	45.6	-	-	-	Birds, hippos, insects in the proximity of a tree and a boat transit.	Paraa ferry crossing (ID sampling point NA4).	Overall, noise levels observed during the study were typical of noise expected in a rural and
DE/ENV/2013/2/0 53 Proposed Victoria	Along the Victoria Nile	-	36.8	31.1	33.6	-	-	-	-	Birds, aircraft transit (distant).	Preferred mooring location at Wild Frontiers lease land (ID sampling point NA5).	wilderness setting. Three out of four locations on the south bank exceeded the limits albeit by a minor degree. It can be concluded therefore that
Nile 3D Seismic Coverage, April 2013	Surveys conducted in February 2013.	Image: Substant of the second seco	background noise levels are higher in disturbed areas on the south bank. Both natural (fauna) and anthropogenic sources contributed to baseline; although noise levels were generally higher on the south									
	-	-	-	-	-	-	-	-			bank where human presence is significantly higher	
		-	-	-	-	-	58.7	-	-			Based on the National
	_	-	-	-	-	-	59.1	-	-	Wind blowing through		Environment (Noise Standards
	Sompling points at	-	-	-	-	-	58.5	-	-	vegetation	Mpyo-D site.	and Control Regulations 2003),
	every 60 m along the	-	-	-	-	-	58.3	-	-			baseline noise levels exceeded
	cardinal directions of	-	-	-	-	-	58.5	-	-	-		the permissible noise levels for
DE/ENV/2013/R/0 49 Proposed Appraisal Drilling: Mpyo Field (south area), February 2013	cardinal directions of the 3 proposed drill pad sites. Extra measurements taken along the proposed access roads to these sites. Other ambient background noise measurement points were selected based on proximity to sensitive receptors as	-	-	-	-	-	58.3	-	-	Wind blowing through vegetation.	Paraa-Masindi road junction: sensitive receptor near Mpyo-D.	environmental and recreational areas whose permissible level is set at 45 dB (A) during the day, but these noise measurements are within a similar range to other measurements undertaken from other studies and conducted within the MFNP.Noise levels recorded at and within the project site were influenced by wind blowing through vegetation.
	well as the location of	-	-	-	-	-	58.6	-	-			Based on the National
	nade Survoye	-	-	-	-	-	58.7	-	-	Partially influenced by		Environment (Noise Standards
	conducted in	-	-	-	-	-	58.2	-	-	birds chirping and wind		and Control Regulations 2003),
	December 2012.	-	-	-	-	-	58.3	-	-	blowing through	Mpyo-L site.	baseline noise levels exceeded
		-	-	-	-	-	58.1	-	-	vegetation.		the permissible noise levels for
		-	-	-	-	-	58.3	-	-			environmental and recreational
		-	-	-	-	-	58.3	-	-			areas whose permissible level is

Table I1-2: Secondary Data: Summary of available noise measurements performed by other consultants south of the Victoria Nile

Source of	Sampling locations	Measured	noise le	vels dB(/	A) ^(B)							
information (TEP Uganda)	south of the Victoria Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Site Description	Summary of the available results
		-	-	-	-	-	58	-	-			set at 45 dB (A) during the day,
		-	-	-	-	-	57.6	-	-			but these noise measurements
		-	-	-	-	-	58.4	-	-	Partially influenced by birds chirping and wind blowing through vegetation.	Paraa-Masindi access road junction.	are within a similar range to other measurements undertaken from other studies and conducted within the
		-	-	-	-	-	58.8	-	-	Partially influenced by birds chirping and wind blowing through vegetation.	Seasonal river (695 m East of the site).	MFNP. Noise levels recorded at the site were influenced by bird calls and wind blowing through vegetation.
		-	-	-	-	-	58.7	-	-	-		
		-	-	-	-	-	58.6	-	-	-		Based on the National
		-	-	-	-	-	58.8	-	-	-		
	-	-	-	-	-	59.2	-	-	-		Environment (Noise Standards	
		-	-	-	-	-	58.8	-	-	-	Mpyo-6 (M) site.	and Control Regulations 2003),
		-	-	-	-	-	59.3	-	-	-		baseline noise levels recorded
		-	-	-	-	-	59.1	-	-	-		exceeded the permissible noi
		-	-	-	-	-	60.1	-	-	-		levels for residential areas set at
		-	-	-	-	-	59.3	-	-	-		50 dB(A) during the day, but
		-	-	-	-	-	60.1	-	-	-		these holse measurements are
		-	-	-	-	-	59.5	-	-	-		within a similar range to other
		-	-	-	-	-	58.9	-	-	-	Homestead.	other sites when similar studies
		-	-	-	-	-	59	-	-	-	Sensitive receptors.	have been conducted within the
		-	-	-	-	-	63	-	-	-		area
		-	-	-	-	-	65	-	-	-		Noise levels recorded at this site
	-	-	-	-	-	-	62.3	-	ŀ	-	Mubako Trading Centre.	were mainly influenced by local community human
		-	-	-	-	-	59	-	-	-	Wetland.	conversation, sounds made by
		-	-	-	-	-	58.8	-	-	-		domesticated animals (poultry
		-	-	-	-	-	58.4	-	-	-	Homostoad	and goats) and insect and birds
		-	-	-	-	-	58.3	-	-	-	nomesteau.	calls.
	-	-	-	-	-	58.5	-	-	-]		
		-	-	-	-	-	58.8	-	-	-	Church.]

Source of information	Sampling locations west of the Victorai	Measure	d noise	levels di	B(A) ^(B)					Noiso sourcos	Site	Summary of the available
(TEP Uganda)	Nile	L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Description	results
DE/ENV/2012/R/028 Proposed expansion of Adundu Camp, Nebbi District, West Nile, September 2012	Sampling location nearby human receptors (homesteads) and fauna receptors (grazing cattle and birds).	_ (B)	46.4	31	36.3	52	-	-	-	Nesting birds on the nearby trees.	-	Noise sources mainly non- anthropogenic (nesting birds in the nearby trees). The background noise levels are within the maximum permissible noise levels for 'environmental or recreational sites' specified in the National Environment (Noise Standards and Control) Regulations, 2003.
		56.9	41.5	33	38.5	-	-	-	-	Clucking chickens, birds chirping and human conversation.	-	
	Measurements were undertaken at locations	56.4	43.6	37	41.5	-	-	-	-	Youth congregation and birds chirping.	-	
		64.7	45.1	32.5	39	-	-	-	-	Human conversation, bleating goats and wood chopping activity in the vicinity.	-	With the exception of areas close to the Pakwach – Panyimur – Dei road, Panyimur Sub County and
		58.5	41.5	35.5	38.5	-	-	-	-	Human conversation, birds chirping, bleating goats and rustling leaves.	-	Aboko Trading Centre, noise measurements at the rest of the points within the 2 km from the drill pad indicated an environment that
Ondyek-1 (A) Well Project,	drill pad with potential	52	41.9	32.5	39.5	-	-	-	-	Birds chirping and human conversation.	-	was devoid of sources of noise. National noise regulations require
	Surveys conducted in	66.3	51.7	39	47	-	-	-	-	Birds chirping and human conversation.	-	that the maximum permissible noise level for general
	April 2012.	56.3	43.1	36.5	40.5	-	-	-	-	-	-	environment in a residential area
		65.6	46.3	38	43	-	-	-	-	-	-	with small industrial or small scale
		59.2	44.8	37.5	42.5	-	-	-	-	-	-	production and commercial
		78.5	71	69	70.5	-	-	-	-	Panyimur market activity, noises from a cassava mill.	In the proximity of the Panyimur market.	activities is 60 dB(A) during the day and 50 dBA at night.
	e	61.8	46.1	40	42.5	-	-	-	-	Birds chirping and human conversation	Close to the Pakwach – Panyimur – Dei road.	

Table I1-3: Secondary Data: Summary of available noise measurements performed by other consultants west of the Victoria Nile

Source of information	Sampling locations west of the Victorai Nile	Measure	ed noise	levels di	B(A) ^(B)				Noise sources	Site	Summary of the available	
(TEP Uganda)		L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min		Description	results
		65	49.6	44	46.5	-	-	-	-	Vehicles transit and croaking frogs.	Close to the Pakwach – Panyimur – Dei road.	
		74.1	60.2	48.5	54.5	-	-	-	-	Vehicles transit and children conversation in the vicinity of a borehole.	Close to the Pakwach – Panyimur – Dei road.	
		58.3	45.4	37	42.5	-	-	-	-	Birds chirping.	-	
		55.8	42.1	34	38.5	-	-	-	-	Birds chirping and human conversation.	-	
		53.5	41.3	35.5	38	-	-	-	-	-	-	
DE/ENV/2012/R/014 Proposed Pakech Camp to support West Nile Exploration Drilling, August 2012	Noise levels were measured at the nearest receptor from the proposed camp site. Surveys conducted in April 2012.	57.3	38.4	30.0	35.0	-	-	-	-	-	-	Major sources of noise included birds and traffic along the Pakwach – Arua Highway. The area is relatively quiet as seen from the relatively low noise levels recorded.
		55.8	38.3	32.5	36.0	-	-	-	-	Birds chiming and	-	
		52.7	37.0	31.0	34.5	-	-	-	-	rustling leaves	-	
		72.1	54.4	34.5	42.5	-	-	-	-	rusting leaves.	-	
		64.0	46.2	34.0	40.5	-	-	-	-	Wood chopping activity and birds chirping.	-	
DE/ENV/2012/R/033		59.7	42.0	37.0	39.0	-	-	-	-	Birds chirping and rustling leaves.	-	The results indicated a relatively
Riwu-1 (A) Exploration		62.1	41.9	31.0	37.5	-	-	-	-	Birds chirping.	-	proposed Riwu-1 (A) drill pad. The
Well Project- Environmental and Social Impact Statement, October	Surveys conducted in April 2012.	67.7	49.6	30.5	36.5	-	-	-	-	Construction of a hut, human conversation and a cock-crow.	-	predominant sources of noise were birds and livestock with little or no human influence at the
2012		59.0	42.8	34.0	39.0	-	-	-	-	Birds chirping and rustling leaves.	-	sampled locations.
		54.2	48.9	46.0	48.5	-	-	-	-	Rustling leaves and human conversation.	-	
		66.4	46.4	34.5	41.5	-	-	-	-	Birds chirping and herdsman's whistling.	-	
		55.5	44.6	35.0	41.5	-	-	-	-	Rustling leaves and human conversation.	-	
DE/ENV/2012/R/034 Omuka-A Well Project- Environmental and Social	Baseline noise measurement was undertaken at locations	60.7	46.8	42.0	45.0	-	-	-	-	Birds chirping and wood chopping activity.	-	The baseline noise measurements indicated a relatively quiescent environment
	around the proposed	62.0	46.1	40.5	43.5	-	-	-	-		-	currently devoid of sources of high

Courses of information	Sampling locations	Measure	d noise	levels di	B(A) ^(B)					Site	Summary of the available	
(TEP Uganda)	Nile	L _{AMax}	L _{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Description	results
Impact Statement, October 2012	drill pad with potential receptors. The drill pad is located	59.8	48.1	40.5	46.0	-	-	-	-	Human conversation, rustling leaves and birds chirping.	-	noise pollution. National noise regulations require that the maximum permissible noise levels
	in the Western rift valley along the shoreline	93.7	83.9	80.5	83.0	-	-	-	-	Loud bar music and barking dogs.	-	for general environment in a residential area with small
	areas of Lake Albert. Coordinates: 309760E, 243034N (UTM 36N,	61.0	42.8	38.0	40.5	-	-	-	-	Human conversation, rustling leaves and birds chirping.	-	industrial or small scale production and commercial activities are 60 dB (A) during the day and 50 dB
	WGS 84). Surveys conducted in April 2012.	54.9	42.8	39.5	42.0	-	-	-	-	Loud music, human conversation and birds chirping.	-	(A) at night.
		58.8	43.5	34.5	39.0	-	-	-	-	Kayonga Primary School, motorcycle transit, human conversation and birds chirping.	-	
		58.9	55.4	54.0	55.5	-	-	-	-	School, chirping birds and crickets, rustling leaves, distant thunder	-	
		65.0	50.0	42.5	46.5	-	-	-	-	Birds chirping, strong breeze and rustling leaves.	-	
		59.4	47.7	41.0	45.5	-	-	-	-	Human conversation, wood chopping activities and clucking chickens.	-	
		66.8	49.6	43.5	47.0	-	-	-	-	Sounds from a Pentecostal church, bird chirping and human conversation.	-	
		65.6	47.8	42.5	46.0	-	-	-	-	Sounds from a Health Centre, human conversation and road traffic.	-	
		61.8	49.1	42.0	45.0	-	-	-	-	Motorcycle transit, bleating goats and strong breeze through the vegetation.	-	
		57.7	48.2	46.0	47.5	-	-	-	-	Bird chirping, loud music from a radio playing in the vicinity, human conversation and rustling leaves.	-	

Course of information	Sampling locations west of the Victorai Nile	Measure	ed noise	levels di	B(A) ^(B)					Site	Summary of the available	
(TEP Uganda)		L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Мах	Min	Noise sources	Description	results
		70.8	54.0	49.5	51.0	-	-	-	-	Strong breeze, bushfire crackling, chirping birds.	-	
		66.9	52.8	47.5	50.5	-	-	-	-	Loud music from a stereo playing, birds chirping and children speaking and playing in the proximity of a school.	-	
		54.3	41.9	39.0	40.5	-	-	-	-	Bird chirping, human conversation and rustling leaves.	-	
		48.2	39.7	32.5	37.0	-	-	-	-	Bird chirping, human conversation and motorcycle transit.	-	
	The drill pad is located at Nyapolo Village about 500 m from the	57.8	45.4	35.5	41.5	-	-	-	-	Children conversation, crowing chicken and birds chirping.	-	
		58.3	43.4	33.0	40.5	-	-	-	-	Mooing cattle, birds chirping and human conversation.	-	
		54.7	44.0	36.5	41.5	-	-	-	-	Birds chirping and rustling leaves.	-	
DE/ENV/2012/R/038		65.3	47.4	35.5	40.5	-	-	-	-	Birds chirping, rustling leaves and human conversation.	-	The results of baseline noise measurements indicated an
Okuma-A Exploration Well Project-Environmental and	Pakwach-Nebbi Highway. Its	65.6	44.0	34.5	40.5	-	-	-	-	Birds chirping and rustling leaves.	-	noise at the time measurements
Social Impact Statement, October 2012	coordinates are 319005E, 271368N. Surveys conducted in April 2012.	74.7	69.9	69.0	69.0	-	-	-	-	Noise form a power generator, highway traffic and human conversation.	-	sources of noise were birds with relatively low human influence at the sampled locations.
		63.6	47.4	33.0	35.5	-	-	-	-	Crowing chicken, birds chirping and rustling leaves.	-	
		52.4	39.4	29.5	36.0	-	-	-	-	Low noise from the distant highway traffic, birds chirping and rustling leaves.	-	
		62.5	37.5	30.0	34.0	-	-	-	-	Birds chirping and rustling leaves.	-	

Source of information (TEP Uganda)	Sampling locations west of the Victorai Nile	Measure	ed noise	levels di	B(A) ^(B)					Site	Summary of the available	
		L_{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Description	results
		60.2	47.6	39.5	43.5	-	-	-	-	Highway traffic, birds chirping and rustling leaves.	-	
		54.9	42.8	31.5	38.0	-	-	-	-	Birds and crickets chirping, highway traffic and rustling leaves.	-	
		57.9	42.1	32.0	36.5	-	-	-	-	Llomostood	-	
		58.3	40.6	30.5	38.5	-	-	-	-	Homestead.	-	
		69.9	50.2	41.5	47.0	-	-	-	-	Noise from a radio playing and goats bleating.	-	
		57.4	47.3	36.5	43.0	-	-	-	-	Highway traffic, human conversation	-	
		67.6	43.5	31.5	35.5	-	-	-	-	Birds chirping.	-	
		56.9	44.1	34.5	38.5	-	-	-	-	Birds chirping and rustling leaves.	-	
		65.7	49.1	32.5	39.5	-	-	-	-	Barking dog.	-	
		56.9	38.8	31.0	35.0	-	-	-	-	Human conversation and wood chopping activity.	-	
		56.8	38.4	32.0	36.0	-	-	-	-	School, church	-	
		65.3	49.6	34.0	40.5	-	-	-	-	Clucking chicken and highway traffic.	-	
		59.5	45.7	31.0	37.0	-	-	-	-	Birds chirping and highway traffic.	-	
		70.6	50.0	34.0	42.0	-	-	-	-	Goat bleating and human conversation.	-	
	The drill red is leasted	55.1	40.3	31.5	37.0	-	-	-	-	Rustling leaves,	-	
	in Kiveye West village	51.4	35.9	27.5	33.0	-	-	-	-	human conversation	-	
	in a cotton garden	54.1	41.8	31.5	36.5	-	-	-	-	and birds chirping.	-	The results indicated an
DE/ENV/2012/R/040 Alwala-A Well Project- Environmental and Social Impact Statement, October 2012	about 1.5 km from Boro Trading Centre on	59.3	42.0	31.0	37.5	-	-	-	-	Squeaking bicycle, human conversation and birds chirping.	-	environment with low levels of noise at the time of measurements
	road (coordinates: 0317933F 0259247N -	60.4	45.8	36.5	42.5	-	-	-	-	Birds chirping and human conversation.	-	noise sources were birds and no
	UTM 36N, WGS 84).	65.4	47.1	37.0	42.5	-	-	-	-	Bird and crickets sounds.	-	at the proposed site.
	April 2012.	58.2	44.6	35.5	41.5	-	-	-	-	Birds chirping and	-	
		63.2	39.5	30.0	34.0	-	-	-	-	human conversation.	-	

Source of information (TEP Uganda)	Sampling locations west of the Victorai Nile	Measure	d noise	levels di	B(A) ^(B)					Site	Summary	of	the	available	
		L _{AMax}	L_{Aeq}	L _{A90}	L _{A50}	L ₁₀	Average dB(A) ^(A)	Max	Min	Noise sources	Description	results			
		53.6	41.2	32.0	37.0	-	-	-	-	Crying baby, human conversation and a cow mooing in the proximity.	-				
Appendix I2: Site Preparation and Enabling Works Results

Appendix I2. Site Preparation and Enabling Works Results

Figure I2-1: Industrial Area Site Preparation and Enabling Works Daytime Noise Contours

The assessment of noise due to site preparation and enabling works at the Industrial Area is presented in Section 7.6.3.2.1

Figure I2-2: Industrial Area Site Preparation and Enabling Works Receptor Analysis

Figure I2-3: Well Pad Site Preparation and Enabling Works Daytime Noise Contours

The assessment of noise due to site preparation and enabling works at well pad sites is presented in Section 7.6.3.2.2

Figure I2-4: GNA-01 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-5: GNA-02 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-6: GNA-03 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-9: JBR-02 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-11: JBR-04 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-12: JBR-05 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-14: JBR-07 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-16: JBR-09 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-17: JBR-10 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-18: KGG-01 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-19: KGG-03 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-21: KGG-05 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-22: KGG-06 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-23: KGG-09 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-24: KW-01 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-25: KW-02A Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-26: KW-02B Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-28: NGR-02 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-29: NGR-03A Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-30: NGR-05A Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-32: NSO-01 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-35: NSO-04 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-36: NSO-05 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-37: NSO-06 Site Preparation and Enabling Works Daytime Receptor Analysis

Figure I2-38: Road Construction Daytime Noise Contours

The assessment of noise due to road construction/ upgrade works is presented in Section 7.6.3.2.7

Figure I2-39: Road Construction Receptor Analysis – Road A1

Figure I2-40: Road Construction Receptor Analysis – Road A1

Figure I2-41: Road Construction Receptor Analysis – Road A2

Figure I2-42: Road Construction Receptor Analysis – Road A2

Figure I2-43: Road Construction Receptor Analysis – Road A3

Figure I2-44: Road Construction Receptor Analysis – Road A3

Figure I2-45: Road Construction Receptor Analysis – Road A4

Figure I2-46: Road Construction Receptor Analysis – Road B1

Figure I2-47: Road Construction Receptor Analysis – Road B2

Figure I2-48: Road Construction Receptor Analysis – Road C1

Figure I2-49: Road Construction Receptor Analysis – Road C2

Figure I2-50: Road Construction Receptor Analysis – Road C3

Figure I2-51: Road Construction Receptor Analysis – Road D1

Figure I2-52: Road Construction Receptor Analysis – Road D10

Figure I2-53: Road Construction Receptor Analysis – Road D11

Figure I2-55: Road Construction Receptor Analysis – Road D12

Figure I2-56: Road Construction Receptor Analysis – Road D13

Figure I2-57: Road Construction Receptor Analysis – Road D14

Figure I2-58: Road Construction Receptor Analysis – Road D15

Figure I2-59: Road Construction Receptor Analysis – Road D16

Figure I2-60: Road Construction Receptor Analysis – Road D17

Figure I2-61: Road Construction Receptor Analysis – Road D18

Figure I2-62: Road Construction Receptor Analysis – Road D19

Figure I2-63: Road Construction Receptor Analysis – Road D19 (alternative route)

Figure I2-64: Road Construction Receptor Analysis – Road D2

Figure I2-65: Road Construction Receptor Analysis – Road D20

Figure I2-66: Road Construction Receptor Analysis – Road D22

Figure I2-67: Road Construction Receptor Analysis – Road D23

Figure I2-68: Road Construction Receptor Analysis – Road D24

Figure I2-69: Road Construction Receptor Analysis – Road D25

Figure I2-70: Road Construction Receptor Analysis – Road D26

Figure I2-71: Road Construction Receptor Analysis – Road D27

Figure I2-72: Road Construction Receptor Analysis – Road D3

Figure I2-73: Road Construction Receptor Analysis – Road D5

Figure I2-74: Road Construction Receptor Analysis – Road D6

Figure I2-75: Road Construction Receptor Analysis – Road D8

Figure I2-76: Road Construction Receptor Analysis – Road D9

Figure I2-77: Road Construction Receptor Analysis – Road N1

Figure I2-79: Road Construction Receptor Analysis – Road N3

Figure I2-80: Road Construction Receptor Analysis – Road W1

Appendix 13: Construction and Pre-Commissioning Phase Results

Appendix I3. Construction and Pre-Commissioning Phase Noise Contour Plots

Figure I3-1: Well Pad Drilling Night-time Noise Contours

The assessment of noise due to well drilling works is presented in Section 7.6.4.2.3

Figure I3-2: GNA-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-3: GNA-02 Night-time Well Pad Drilling Receptor Analysis

Figure I3-4: GNA-03 Night-time Well Pad Drilling Receptor Analysis

Figure I3-5: GNA-04 Night-time Well Pad Drilling Receptor Analysis

Figure I3-6: JBR-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-7: JBR-02 Night-time Well Pad Drilling Receptor Analysis

Figure I3-8: JBR-03 Night-time Well Pad Drilling Receptor Analysis

Figure I3-9: JBR-04 Night-time Well Pad Drilling Receptor Analysis

Figure I3-10: JBR-05 Night-time Well Pad Drilling Receptor Analysis

Figure I3-11: JBR-06 Night-time Well Pad Drilling Receptor Analysis

Figure I3-12: JBR-07 Night-time Well Pad Drilling Receptor Analysis

Figure I3-13: JBR-08 Night-time Well Pad Drilling Receptor Analysis

Figure I3-14: JBR-09 Night-time Well Pad Drilling Receptor Analysis

Figure I3-15: JBR-10 Night-time Well Pad Drilling Receptor Analysis

Figure I3-16: KGG-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-17: KGG-03 Night-time Well Pad Drilling Receptor Analysis

Figure I3-18: KGG-04 Night-time Well Pad Drilling Receptor Analysis

Figure I3-19: KGG-05 Night-time Well Pad Drilling Receptor Analysis

Figure I3-20: KGG-06 Night-time Well Pad Drilling Receptor Analysis

Figure I3-21: KGG-09 Night-time Well Pad Drilling Receptor Analysis

Figure I3-22: KW-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-23: KW-02A Night-time Well Pad Drilling Receptor Analysis

Figure I3-24: KW-02B Night-time Well Pad Drilling Receptor Analysis

Figure I3-25: NGR-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-26: NGR-02 Night-time Well Pad Drilling Receptor Analysis

Figure I3-27: NGR-03A Night-time Well Pad Drilling Receptor Analysis

Figure I3-30: NSO-01 Night-time Well Pad Drilling Receptor Analysis

Figure I3-31: NSO-02 Night-time Well Pad Drilling Receptor Analysis

Figure I3-32: NSO-03 Night-time Well Pad Drilling Receptor Analysis

Figure I3-33: NSO-04 Night-time Well Pad Drilling Receptor Analysis

Figure 13-34: NSO-05 Night-time Well Pad Drilling Receptor Analysis

Figure I3-35: NSO-06 Night-time Well Pad Drilling Receptor Analysis

Figure I3-36: Production and Injection Network Construction Daytime Noise Contours

The assessment of noise due to construction of the production and injection network is presented in Section 7.6.4.2.5

Figure I3-37: Production and Injection Network Construction Receptor Analysis – CNA-01 to CPF

Figure I3-38: Production and Injection Network Construction Receptor Analysis – GNA-02 to GNA-04

Figure I3-39: Production and Injection Network Construction Receptor Analysis – GNA-04 to GNA-01

Figure I3-40: Production and Injection Network Construction Receptor Analysis – GNA-04 to GNA-03

Figure I3-42: Production and Injection Network Construction Receptor Analysis – JBR-02 to JBR-01

Figure I3-43: Production and Injection Network Construction Receptor Analysis – JBR-03 to JBR-01

Figure I3-44: Production and Injection Network Construction Receptor Analysis – JBR-04 to JBR-03

Figure I3-45: Production and Injection Network Construction Receptor Analysis – JBR-05 to JBR-03

Figure I3-46: Production and Injection Network Construction Receptor Analysis – JBR-06 to JBR-05

Figure I3-47: Production and Injection Network Construction Receptor Analysis – JBR-07 to JBR-08

Figure I3-48: Production and Injection Network Construction Receptor Analysis – JBR-08 to JBR-07

Figure I3-49: Production and Injection Network Construction Receptor Analysis – JBR-09 to JBR-08

Figure I3-50: Production and Injection Network Construction Receptor Analysis – JBR-10 to JBR-01

Figure I3-52: Production and Injection Network Construction Receptor Analysis – KGG-01 to KGG-04

Figure I3-53: Production and Injection Network Construction Receptor Analysis – KGG-03 to KGG-01

Figure I3-54: Production and Injection Network Construction Receptor Analysis – KGG-04 to NSO-04

Figure I3-55: Production and Injection Network Construction Receptor Analysis – KGG-05 to NSO-02

Figure I3-56: Production and Injection Network Construction Receptor Analysis – KGG-06 to KGG-04

Figure I3-57: Production and Injection Network Construction Receptor Analysis – KGG-09 to KGG-04

Figure I3-58: Production and Injection Network Construction Receptor Analysis – KW-01 to KW-02A

Figure I3-59: Production and Injection Network Construction Receptor Analysis – KW-02A to KW-02B

Figure I3-60: Production and Injection Network Construction Receptor Analysis – KW-02B to NGR-06

Figure I3-61: Production and Injection Network Construction Receptor Analysis – NGR-02 to NGR-01

Figure I3-62: Production and Injection Network Construction Receptor Analysis – NGR-03A to NGR-05A

Figure I3-63: Production and Injection Network Construction Receptor Analysis – NGR-05A to CPF

Figure I3-64: Production and Injection Network Construction Receptor Analysis – NGR-06 to NGR-05A

Figure I3-65: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to CPF

Figure I3-66: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to CPF – alternative route

Figure I3-67: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 1) to HDD Crossing (option 1)

Figure I3-68: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 2) to CPF via NGR-01

Figure I3-69: Production and Injection Network Construction Receptor Analysis – HDD Crossing (option 2) to HDD Crossing (option 2)

Figure I3-70: Production and Injection Network Construction Receptor Analysis – NS0-01 to NS0-05

Figure I3-71: Production and Injection Network Construction Receptor Analysis – NS0-02 to NS0-06

Figure I3-72: Production and Injection Network Construction Receptor Analysis – NS0-03 to CPF

Figure I3-73: Production and Injection Network Construction Receptor Analysis – NSO-04 to NS0-03

Figure I3-74: Production and Injection Network Construction Receptor Analysis – NSO-05 to NS0-03

Figure I3-75: Production and Injection Network Construction Receptor Analysis – NSO-06 to NS0-01

Figure I3-76: Production and Injection Network Construction Receptor Analysis – Water station to KW-02B

Figure I3-77: Bugungu Airstrip Noise Contours for 05 Runway Operations

The assessment of noise due to aircraft movements at Bugungu Airfield is presented in Section 7.6.4.2.7

The assessment of noise due to HDD drilling activities is presented in Section 7.6.4.2.10

Figure I3-79: Victoria Nile HDD Drilling – South Side

The assessment of noise due to HDD drilling activities is presented in Section 7.6.4.2.10

Figure I3-80: Option 1 Victoria Nile HDD Drilling Receptor Analysis – South Side

Figure I3-81: Option 1 Victoria Nile HDD Drilling Receptor Analysis – North Side

Figure I3-82: Option 2 Victoria Nile HDD Drilling Receptor Analysis – South Side

Figure I3-83: Option 2 Victoria Nile HDD Drilling Receptor Analysis – North Side

Appendix 14: Commissioning and Operation Phase Results

Appendix I4. Commissioning and Operation Noise Contour Plots

Figure I4-1: CPF Option 1 Commissioning and Operation Noise Contours

The assessment of noise due to the operational Industrial Area is presented in Section 7.6.5.2.1

Figure I4-2: CPF Option 2 Commissioning and Operation Noise Contours

Figure I4-4: Well Pad Commissioning and Operation Noise Contours

Figure I4-5: GNA-01 Commissioning and Operation Receptor Analysis

Figure I4-6: GNA-02 Commissioning and Operation Receptor Analysis

Figure I4-7: GNA-03 Commissioning and Operation Receptor Analysis

Figure I4-8: GNA-04 Commissioning and Operation Receptor Analysis

Figure I4-9: JBR-01 Commissioning and Operation Receptor Analysis

Figure I4-10: JBR-02 Commissioning and Operation Receptor Analysis

Figure I4-11: JBR-03 Commissioning and Operation Receptor Analysis

Figure I4-12: JBR-04 Commissioning and Operation Receptor Analysis

Figure I4-13: JBR-05 Commissioning and Operation Receptor Analysis

Figure I4-14: JBR-06 Commissioning and Operation Receptor Analysis

Figure I4-15: JBR-07 Commissioning and Operation Receptor Analysis

Figure I4-16: JBR-08 Commissioning and Operation Receptor Analysis

Figure I4-17: JBR-09 Commissioning and Operation Receptor Analysis

Figure I4-18: JBR-10 Commissioning and Operation Receptor Analysis

Figure I4-19: KGG-01 Commissioning and Operation Receptor Analysis

Figure I4-20: KGG-03 Commissioning and Operation Receptor Analysis

Figure I4-22: KGG-05 Commissioning and Operation Receptor Analysis

Figure I4-23: KGG-06 Commissioning and Operation Receptor Analysis

Figure I4-24: KGG-09 Commissioning and Operation Receptor Analysis

Figure I4-25: KW-01 Commissioning and Operation Receptor Analysis

Figure I4-26: KW-02A Commissioning and Operation Receptor Analysis

Figure I4-27: KW-02B Commissioning and Operation Receptor Analysis

Figure I4-28: NGR-01 Commissioning and Operation Receptor Analysis

Figure I4-29: NGR-02 Commissioning and Operation Receptor Analysis

Figure I4-30: NGR-03A Commissioning and Operation Receptor Analysis

Figure I4-31: NGR-05A Commissioning and Operation Receptor Analysis

Figure I4-32: NGR-06 Commissioning and Operation Receptor Analysis

Figure I4-33: NSO-01 Commissioning and Operation Receptor Analysis

Figure I4-34: NSO-02 Commissioning and Operation Receptor Analysis

Figure I4-35: NSO-03 Commissioning and Operation Receptor Analysis

Figure I4-36: NSO-04 Commissioning and Operation Receptor Analysis

Figure I4-37: NSO-05 Commissioning and Operation Receptor Analysis

Figure I4-38: NSO-06 Commissioning and Operation Receptor Analysis

Appendix 15: Unplanned Events Results

Appendix I5. Commissioning and Operation Noise Contour Plots

Figure I5.1: Emergency Flaring Noise Contours

The assessment of noise due to the flaring activities is presented in Section 7.8

Figure I5.2: Emergency Flaring Receptor Analysis