

## TILENGA PROJECT

## ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

Volume VI(a)

Submitted to:
National Environment Management Authority

This page has intentionally been left blank to allow for double sided printing

Due to the size of the appendices, for the printed version of the ESIA they have been split into 2 volumes (6a and 6b) as follows:

## ESIA VOLUME 6a:

Appendix A: NEMA Approval for Scoping Report and Project Proponents Response

Appendix B: Key Project Component Fact Sheets
Appendix C: Early Works Project Brief (PB) Executive
Summary and Enabling Infrastructure Geotechnical surveys PB Executive Summary

Appendix D: A3 copy of key figures
Appendix E: Additional Project Description material
Appendix F: CIA VEC Summary Report
Appendix G: Stakeholder Engagement Plan and supporting information

Appendix H: Air Quality supporting information
Appendix I: Noise and Vibration supporting information

## ESIA VOLUME 6b:

Appendix J: Soils and Geology supporting information
Appendix K: Hydrogeology supporting information
Appendix L: Surface Water supporting information
Appendix M: Landscape and Visual supporting information
Appendix N: Terrestrial Vegetation supporting information
Appendix O: Terrestrial Wildlife supporting information
Appendix P: Aquatic Life supporting information

Appendix Q: Social supporting information
Appendix R: Archaeology and Cultural Heritage supporting information

Appendix: S: Ecosystem Services supporting information
Appendix T: ESMP Mitigation Checklist

TILENGA PROJECT ESIA APPENDIXA:
Reponse to comments from
NEMA on for Scoping
Report and ESIA Terms of Reference

This page has intentionally been left blank to allow for double sided printing

## Table of Contents

1. Annex A - NEMA Approval and Response to Scoping Report and ESIA Terms of Reference (TOR)..... 4
2. Annex B - Response to NEMA Comments on Scoping Report ..... 10

## 1. Annex A - NEMA Response to Scoping Report and ESIA Terms of Reference (TOR)

A Scoping Report for the Tilenga Project which contained a detailed proposed Terms of Reference for the ESIA was submitted to NEMA in December 2015 (at the time of Scoping, the Project name was EA-1/EA-1A and EA-2 North Project). NEMA subsequently provided formal approval of the Scoping Report and Terms of Reference on $21^{\text {st }}$ April 2016. A copy of the approval is contained below.


This is in reference to the Scoping Report and Terms of Reference (ToR) for carrying out an Environmental Impact Assessment for the proposed EA-1/EA-1A and EA-2 North Project in Buliisa and Nwoya Districts that were submitted to this Authority for review and consideration.

The review has been completed and the ToR are generally deemed appropriate to guide the Environment Impact Study. However, in addition to the aspects and the scope of work identified in the ToR, there are a number of issues that have to be addressed during the conduct of the study and preparation of the report as highlighted below:-

1. EIA Team
(i) Ensure that all persons who will participate in the EIA process in-country are duly registered and certified in accordance with the National Environment Act Cap 153 and National Environment Impact Assessment Regulations, 1998. The use of incountry expertise is encouraged where there is sufficient capacity.
(ii) It is recommended that an Environmental Engineer with clear understanding of the local requirements is included on the local team. The engineer will contribute to the review and alignment of the project components, alternatives and waste management options to local requirements so as to guide the development of implementable actions.

2. Regulatory and Institutional Framework
(i) The EIA should provide a comprehensive and systematic account of how the Strategic Environment Assessment (SEA) for the Albertine Graben is reflected and integrated into the assessment. There should be better indication how results from the SEA are integrated into the EIA for this project. Potential gaps between the SEA concluding advice and the project EIA can be highlighted, and measures that can be taken to fill these gaps within the project proposed.
(ii) The relevance of IFC standards to this project is recognized, however Ugandan laws and regulations should be adhered to while seeking to achieve a 'net gain' in biodiversity and ecosystem services for the highly sensitive areas in the project area (refer to section 1.3.2 of the scoping report).
3. Stakeholder consultation
(i) The Directorates of Gender, Women and Social Affairs of the Ministry of Gender, Labour and Social Development should be consulted in relation to aspects of Gender, HIV, Vulnerable groups among others (Table 7-1). Similarly, the Office of the Prime Minister, Ministry of Internal Affairs and Ministry of Defence should be consulted on emergency preparedness, security issues, migration and crossborder impacts.
4. EIA Study
(i) The study should not only aim at identifying and assessing adverse impacts, but also identifying and enhancing/strengthening any possible positive impacts of the project. This should be one of the objectives of the study.
(ii) The timing of the FEED and EIA should be synchronized to enable full integration of EIA results into the FEED to allow for assessment of design within the ESIA.
(iii) The study should make reference to previous exploration and appraisal activities undertaken in the project area, drawing on experience from previous drilling operations as well as the geotechnical studies. Information on positive and negative impacts, challenges and successes should be systematized and used to inform the EIA and FEED process. The lessons learnt with regard to management of drilling waste (both on-site and off-site), storm water, chemicals, land resettlement and compensation among others, should be considered during the study.
(iv) All locations and construction activities within highly sensitive areas such as the Nile and Murchison Falls National Park, in particular wildlife and tourism hot spots among others, need to be based on comprehensive analysis to avoid any adverse environmental and social impacts.

5. Quality of the EIA Report
(i) Illustrations of the different parts of the project should be related to the context of the development area. The use of non-technical illustrations, photographs, charts and tables, photographic visualizations, visibility maps and 3D models in relation to the project environment is encouraged, as they are a useful tool to help communicate the nature of environmental changes, and to foresee potential impacts.
(ii) Ensure that accurate baseline information is provided in the EIA report. The baselines should be accurately documented to inform the assessment of impacts including, whether the development will lead to 'no net loss' or even a 'positive gain' as suggested in the report, future monitoring as well as restoration activities. Also make reference to previous baseline studies undertaken for instance by Wildlife Conservation Society(WCS) particularly in Murchison Falls National Park and its reserves.
6. Project description and alternatives analysis
(i) The project description should provide a clear understanding of the different project components and planned sequencing/phases of implementation. There is need to ensure that all required pipelines are installed at the construction stage to minimize additional activities at a later stage.
(ii) Adequate detail should be provided about the different project components, exact locations, layout and land take for the well pads, pipelines and other linear infrastructure, camps, operational bases and the Central Processing Facility (CPF) including description of all operations and processes at the CPF. The proposed routing of the pipeline should take advantage of road corridors and provision of one trench for pipeline infrastructure to minimize surface disturbance.
(iii) The land take should be computed and compensation measures proposed. Large land take and surface disturbance should be minimized as much as practicable as the project is located in a fragile and sensitive ecosystem with high ecological and biodiversity significance.
(iv) The alternatives analysis should clearly present the project decisions/tradeoffs made to date including justification for the choices made. This includes information from the high level feasibility studies and the optioneering done at prescoping that helped inform the initial design of the project in order to avoid adverse impacts and strengthen the positive impacts. The alternatives should be assessed not only in respect to physical layouts, timelines and sequencing of project elements, route selections for linear construction, use of chemicals and technology during the development and production stages, but also options for down-sizing the project as a whole or components of it given that the severe impacts of these also need to be considered. The current description of the 'No project' alternative is biased and not within EIA standard or planning best-practice when described as inevitable, even if it is not the likely outcome. There should be a clearer description on how the 'No project' alternative shall be used as a reference alternative describing the likely development of the area without the realization of the proposed development. In order to eliminate or reduce negative impacts arising from the proposed development, realistic alternatives should be provided in the EIA report.
(v) A comprehensive assessment should be undertaken for the project water needs, the estimated amounts of water to be abstracted from the various sources and the capacity of the available resources to meet these needs without compromising the ecosystem and local and regional demands. This should include detailed hydrological study for the L. Albert and associated systems to inform the design of the project. Options for recycling of water should be assessed and provided in the EIS.
(vi) The project should adopt environmentally friendly technologies that protect human health and wildlife, reduces waste and the overall environmental footprint for all operations within the project area. For instance, there is need for careful selection of materials and additives taking into account technical requirements, concentration, toxicity, bioavailability and bioaccumulation potential. This applies to drilling fluids, cement and completion work over fluids, production chemicals, corrosion inhibitors among others. Selection of pipeline material to minimize the use of pipeline chemicals should also be assessed. An assessment justifying the choice of the proposed technologies over other alternatives as well as the material data safety sheets should be provided in the EIA.
(vii) In regard to the planned use of chemicals to enhance oil recovery, the EIA should contain an evaluation of the potential environmental effects of these chemicals. This should include but not be limited to the expected fate of the chemicals in the reservoir and how water resources will be protected from contamination, how much of the chemicals will be back produced with the produced water and possible methods to remove the chemicals from the produced water, in cases where re-injection is not possible.
(viii) Provided that large volumes of murram (approx. 10,000 tons/well pad) are required for the project, it is prudent that the EIA identifies probable sources of murram and other locally available resources such as sand to meet the project needs (refer to section 3.6 .2 of the scoping report). This will involve preliminary identification and general assessment of the availability of these resources locally and in the region. Note that burrowing murram within the national park may be limited.
7. Impact assessment and mitigation
(i) The report should include proposals to comprehensively address the impacts of the project through its full life cycle.
(ii) The mitigation hierarchy should be considered while proposing mitigation actions. Avoidance should be given first consideration while offsets should be a last option.
(iii) The EIA should identify all possible waste streams and develop a comprehensive waste management plan for the project. This should include for the different waste streams; on-site waste handling, storage, transportation, treatment and final disposal or reuse/recycling with waste tracking mechanisms. Explore and propose alternatives for the on-site handling of drilling waste.
(iv) In regard to treatment and disposal of waste drill cuttings and other potentially hazardous waste likely to be generated from the project operations, the treatment
and disposal methods should be clearly described in the EIA as well as measures to mitigate and monitor environmental impacts. The expected outcome from the treatment process to render the waste suitable for other proposed uses, particularly in regard to residual drilling fluids (particularly Non -aqueous drilling fluids (NADFs)) on the cuttings, should be described. Note that the proposed methods of disposal should be applicable within the local regulatory context. Drilling fluids and cuttings management therefore requires thorough assessment of all possible alternatives and objective justification for the selected options.
(v) Ensure that all waste water generated from the operation of the project is treated to meet the required standards prior to disposal. According to the scoping report there seems to be a mis-match between the project water usage and the capacity of the waste water treatment facility. All waste water needs to be accounted for and the capacity and efficiency (expected quality of effluent) of the treatment facility described. Re-injection facilities including how leakages from the well will be prevented and alternative methods of disposal if water cannot be re-injected should also be clearly described. Environmental effects of discharges from pipeline testing and cleaning should also be assessed and appropriate management measures proposed.
(ix) In regard to the pipeline, a leak detection system should also be described.
(x) Drilling and production facilities should be designed for minimum noise and air emissions. The EIA should adequately assess plans for well testing, alternative methods for well testing and expected emissions and /or discharges related to these.
(xi) Ecosystem services for environmental resources such as water both to communities and in the national park should be evaluated to assess how the provision of these services will be affected.
(xii) The EIA should comprehensively address the socio-economic impacts of the project on the livelihood activities within the project area and its area of influence both during construction and operation phase. This should take into account seasonal variation of activities such as tourism, fisheries, agriculture and wildlife behavior/patterns among others.
(v) Cumulative impact assessment should clearly define the area of influence based on the identified Valued Ecosystem Components (VECs). Regional impacts should be evaluated given that the project is located in an area with international values and, an Integrated Management Plan developed to address the identified impacts.
(vi) In regard to visual impacts (Chapter 8, page 182 of the scoping report), provided that well pads will be located in tourism areas for long periods of time, technology for pumping the oil should be specified and measures to blend these facilities should be identified. The impacts of a high presence of people and more water

Page 5 of 6

traffic in an otherwise pristine environment should be assessed in the short term, medium and long term and wherever possible in economic terms.
(vii) The two EIA submissions should clearly describe the bridging mechanism indicating how the two Environmental Management Plans for the respective areas of operation will be implemented to guarantee a joint and successful EIA process and effective implementation of the EIA results into construction, operations and decommissioning/abandonment in the project.

The purpose of this letter therefore, is to grant formal APPROVAL of the TOR pertaining to Environmental Impact Assessment for the proposed EA-1/EA-1A and EA-2 North Project in Buliisa and Nwoya Districts taking into account the above-mentioned issues.

Any developments outside the scope of this ToR shall be subjected to separate Environment Impact Assessment process

We look forward to your cooperation and receipt of ten (10) comprehensive copies of the EIA report, for our further action.
(NOTE: THIS DOES NOT SERVE AS A CERTIFICATE OF APPROVAL)


FOR: EXECUTIVE DIRECTOR
c.c The Director

Petroleum Exploration Development and Production Department Ministry of Energy and Mineral Development ENTEBBE
" The Director
Directorate of Water Resources Management
Ministry of Water and Environment
ENTEBBE
" The Executive Director
Uganda Wildlife Authority (UWA) KAMPALA
" The District Environment Officer
Buliisa District Local Government BULIISA
" The District Environment Officer Nwoya District Local Government NWOYA

## 2. Annex B - Response to comments from NEMA

This section provides a summary table of the comments which also identifies where the comments and recommendations from NEMA have been considered and addressed within the ESIA.

## NEMA APPROVED SCOPING REPORT/ TERMS OF REFERENCE - COMMENTS AND RESPONSES

## 1. EIA Team

| NEMA Comments |  | Project Proponents Response | Relevant Chapter of ESIA |
| :---: | :---: | :---: | :---: |
| i) | Ensure that all persons who will participate in the EIA process in-country are duly registered and certified in accordance with the National Environment Act Cap 152 and National Environmental Impact Assessment Regulations, 1998. The use of in-country expertise is encouraged where there is sufficient capacity. | The study was performed by registered environmental assessment practitioners from AECOM Limited and Eco\&Partner Consult. | Chapter 1: Introduction |
|  | It is recommended that an Environmental Engineer with clear understanding of the local requirements is included on the local team. The engineer will contribute to the review and alignment of the project components, alternatives and waste management options to local requirements so as to guide the development of implementable actions. | The local Consultant (Eco \& Partner) Team Leader is an Environmental Engineer and provided invaluable guidance in the alignment of the Project with national requirements, including the development of mitigation actions which are in line with Ugandan legislation. In addition, the Project Proponents provided a number of environmental engineers (local and international) who worked on the project and as an interface between the ESIA team and the Project Team, including FEED, Enabling Infrastructure (EI) and Drilling. | Chapter 2: Policy, Regulatory and Administrative Framework <br> Chapter 4: Project Description and Alternatives, including embedded mitigation measures <br> Chapters 6-20 <br> Chapter 23: <br> Environmental and Social Management Plan |
| 2. Regulatory and Institutional Framework |  |  |  |
| NEMA Comments |  | Response | Relevant Chapter of ESIA |
| i) | The EIA should provide a comprehensive and systematic account of how the Strategic Environmental Assessment (SEA) for the Albertine Graben is reflected and integrated into the assessment. There should be a better indication how results from the SEA are integrated into the EIA for this project. Potential gaps between the SEA concluding advice and the project EIA can be | The Albertine Graben SEA was considered throughout the production of the ESIA. Numerous chapters and sections of the ESIA build on the recommendations which were outlined within the SEA, with a clear focus on those items relevant to our own Project. | Chapter 2: Policy, Regulatory and Administrative Framework <br> Chapter 21: <br> Cumulative Impact Assessment |



|  |  | opportunities and the opportunities for more efficient and positive management systems to help across the Albertine Graben region. | Chapter 21: <br> Cumulative Impact <br> Assessment |
| :---: | :---: | :---: | :---: |
| ii) | The timing of the FEED and EIA should be synchronized to enable full integration of EIA results into the FEED to allow for assessment of design within the ESIA. | The ESIA and FEED have taken place at the same time. The ESIA has operated slightly ahead of the FEED process, which has provided the opportunity to positively input into the detailed design to ensure environmental and social factors are considered as part of the design. Some key examples of this include: <br> - Design principles identified by the Project Proponents to the EI and FEED engineers have included specific environmental design requirements based on the outcomes of the scoping report (and associated ToR), Uganda national legislative requirements, IFC EHS Guidelines, and Best Available Technology (BAT) reference documentation. <br> - Dedicated ESIA workshops were held with EI and FEED engineers to present the environmental and social baseline. This assisted each contractor with the development of the environmental design philosophies and has been an integral part of the FEED development. <br> - ENVID studies have been undertaken with each entity (EI, FEED and Drilling) to define the embedded design mitigation measures. <br> - Social and ecological avoidance work was undertaken for the ESIA and passed directly to the FEED team to help avoid potential impacts at sensitive receptors. <br> - Ongoing dialogue between each entity and the ESIA contractor to ensure that suitable and sufficient additional mitigation measures derived from the EIA process have been incorporated into the design. <br> - A Management of Change process to monitor and assess any design changes in terms of potential consequences with respect to environment and social was established. | Chapter 4: Project Description and Alternatives |
| iii) | The study should make reference to previous exploration and appraisal activities undertaken in the project area, drawing on experience from previous drilling operations as well as the geotechnical studies. Information on positive and negative impacts, challenges and successes should be systematized and used to inform the EIA and FEED process. The lessons learnt with regard to management of drilling water (both on-site and off-site), storm water, chemicals, land resettlement and compensation among others, should be considered during the study. | The past experiences of the Project Proponents have been fed into the FEED and ESIA process and have helped to inform the development of the design of the Project. For the ESIA, we have drawn upon secondary data contained in other EIAs which have been undertaken in the past as part of the explorations phases. The ESIA therefore builds on the existing information and studies undertaken to date with our own baseline surveys focused specifically on our project footprint/area of influence, where they are required. <br> For storm water management, the main principle will be to minimize, control and manage the generation of surface water at source to prevent risk of erosion, flooding and contamination at source i.e. at the facilities in a sustainable manner which is in line with best practice guidance. <br> Lessons learned for land resettlement and compensation are summarized in the LARF which is used as a basis for the RAPs. | Chapter 4: Project Description and Alternatives and contained within each Technical Chapter as appropriate |

$\left.\begin{array}{|l|l|l|l|}\hline \text { iv) } & \begin{array}{l}\text { All locations and construction activities within highly } \\ \text { sensitive areas such as the Nile and Murchison Falls } \\ \text { National Park, in particular wildlife and tourism hot } \\ \text { spots among others, need to be based on } \\ \text { comprehensive analysis to avoid any adverse } \\ \text { environmental and social impacts. }\end{array} & \begin{array}{l}\text { The evolution of the projects design has taken place with due consideration of the } \\ \text { sensitive environment within which it lies. The FEED have taken into consideration } \\ \text { baseline information gathered over the last 5+ years (for this ESIA and other studies) to } \\ \text { help ensure the design is developed in order to avoid or minimise as many potential } \\ \text { adverse impacts as possible. Furthermore, the Project Proponents have developed a } \\ \text { robust Environmental and Social Avoidance Protocol which sets out clear guidelines and } \\ \text { information which was used to identify sensitive areas of wildlife, tourism and social } \\ \text { features that needed to be avoided due to the sensitivities attached to these locations. } \\ \text { The results of these avoidance surveys fed directly into the design of the Project. } \\ \text { Consequently, this protocol was used to both minimise the size of the development and } \\ \text { the individual land take required for each Project component, as well as for the siting of } \\ \text { the actual individual Project components to help avoid completely the most sensitive } \\ \text { areas. } \\ \text { HDD technique used for the Nile crossing is considered to be a method with least } \\ \text { potential impact among the techniques considered for the river crossing. }\end{array} \\ \text { Chapter 4: Project } \\ \text { Alternativen and }\end{array}\right\}$

|  |  | enhanced. Details of the monitoring and restoration aspects will be further expanded upon in future management Plans which will be prepared for the project as outlined within Chapter 23: ESMP. |  |
| :---: | :---: | :---: | :---: |
| 6. Project description and alternatives analysis |  |  |  |
| NE | Comments | Response | Relevant Chapter of ESIA |
| i) | The project description should provide a clear understanding of the different project components and planned sequencing/phases of implementation. There is need to ensure that all required pipelines are installed at the construction stage to minimize additional activities at a later stage. | The Project Description within the ESIA does provide a clear understanding of the different Project components and planned sequencing/phases for implementation of the project. All Pipeline and flowline construction activities are to be undertaken during the Construction and Pre-Commissioning phase of the project. The Project Description includes details on the activities which will occur for each phase of the development (Site Preparation and Enabling Works; Construction and Pre-Commissioning; Commissioning and Operations; and Decommissioning. | Chapter 4: Project Description and Alternatives |
| ii) | Adequate detail should be provided about the different project components, exact locations, layout and land take for the well pads, pipelines and other linear infrastructure, camps, operational bases and the Central Processing Facility (CPF) including description of all operations and processes at the CPF. The proposed routing of the pipeline should take advantage of road corridors and provision of one trench for pipeline infrastructure to minimize surface disturbance. | The Project Description of the ESIA contains detailed information about the design of the project. In particular, this includes: <br> - Information and description of each Project component; <br> - Confirmed locations of key Project components; <br> - Example layout and land take for the well pads; <br> - Location of pipelines and other linear infrastructure; <br> - Location of camps, operational bases and the Central Processing Facility (CPF) including description of all operations and processes at the CPF. <br> Where possible, the proposed routing of the pipelines has taken advantage of new road corridors in the North Nile and the construction philosophy ensures that there is only one trench for pipelines and flowlines to minimize surface disturbance. | Chapter 4: Project Description and Alternatives |
| iii) | The land take should be computed and compensation measures proposed. Large land take and surface disturbance should be minimized as much as practicable as the project is located in a fragile and sensitive ecosystem with high ecological and biodiversity significance. | The Project has sought to minimise its land take requirements and there was an emphasis during the FEED process to seek solutions to the Projects design which would help reduce the footprint of each and every Project Component. The land take requirements have been calculated and mitigation measures have been developed. This includes the development of specific Resettlement Action Plans covering different components of the Project. <br> Assessment of potential losses and gains for biodiversity are undertaken for the optimized footprint, any additional mitigation measures are identified in order to ensure that Project Proponents meet commitment on No Net Loss and Net Gain to biodiversity. | Chapter 4: Project Description and Alternatives <br> Chapter 16: Social <br> Chapter 13: <br> Terrestrial <br> Vegetation <br> Chapter 14: <br> Terrestrial Wildlife |


| iv) | The alternatives analysis should clearly present the project decisions/trade-offs made to date including justification for the choices made. This includes information from the high level feasibility studies and the optioneering done at the pre-scoping that heled inform the initial design of the project in order to avoid adverse impact and strengthen the positive impacts. The alternatives should be assessed not only in respect to physical layouts, timelines and sequencing of project elements, route selections for linear construction, use of chemicals and technology during the development and production stages, but also options for down-sizing the project as a whole or components of it given that the severe impacts of these also need to be considered. The current description of the 'No project' alternative is biased and not within EIA standard or planning best-practice when described is inevitable even if it is not the likely outcome. There should be a clearer description on how the 'No project' alternative shall be used as a reference alternative describing the likely development of the area without the realization of the proposed development. In order to eliminate or reduce negative impacts arising from the proposed development, relative alternatives should be provided in the EIA report. | Detailed information has been provided on the Alternative analysis undertaken as part of the evolution of the Project. Further detail and information is also provided on the No Development option. | Chapter 4: Project Description and Alternatives |
| :---: | :---: | :---: | :---: |
| v) | A comprehensive assessment should be undertaken for the project water needs, the estimated amounts of water to be abstracted from the various sources and the capacity of the available resources to meet these needs without compromising the ecosystem and local and regional demands. This should include detailed hydrological study for the L. Albert and associated systems to inform the design of the project. Options for recycling of water should be assessed and provided in the EIS. | The Project Proponents have undertaken detailed calculations relating to the water needs for the Project which are compared against anticipated available water resources. Hydrological studies of Lake Albert were conducted by the Project Proponents and the findings used in the selection of the lake as a water source to meet Project needs during the Commissioning and Operations Phase. Further studies to understand the feasibility of using ground water resources for the Site Preparation and Enabling Works, and Construction and Pre-Commissioning phases will be conducted to ensure that all water use for the Project is sustainable, and does not compromise the ecosystem and local and regional demands. <br> Options for reducing the amount of water required through re-use and recycling have also been explored and included in the Project design, where feasible, as detailed in the ESIA and further measures are continually being explored. | Chapter 4: Project Description and Alternatives; <br> Chapter 9: <br> Hydrogeology; and <br> Chapter 10: Surface Water. |
| vi) | The project should adopt environmentally friendly technologies that protect human health and wildlife reduces waste and overall environmental footprint for | In all aspects, the FEED has been based on Good International Industry Practice (GIIP) and BAT. The Project has adopted environmentally friendly technologies to help minimise any potential adverse impacts on human health or wildlife and ecosystems. This was a | Chapter 2: Policy, Regulatory and |

$\left.\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { all operations within the project area, For instance, } \\ \text { there is a need for careful selection of materials and } \\ \text { additives taking into account technical requirements, } \\ \text { concentration toxicity bioavailability and } \\ \text { bioaccumulation potential. This applies to drilling } \\ \text { fluids, cement and completion work over fluids, } \\ \text { production chemicals, corrosion inhibitors among } \\ \text { others. Selection of pipeline material to minimize the } \\ \text { choice of the proposed technologies over the } \\ \text { alternatives as well as the material data safety sheets } \\ \text { should be provided in the EIA. }\end{array} & \begin{array}{l}\text { key consideration for the FEED teams as they sought to identify a suitable design solution } \\ \text { for the Project. }\end{array} & \begin{array}{l}\text { The design proposed by the Project Proponents does not include discharge of chemicals } \\ \text { to environment. Concentration and composition of chemicals shall be defined by } \\ \text { operational requirements; however priority will be given to chemicals with least potential } \\ \text { impact on health, safety or environment. Chemical composition is identified for drilling and } \\ \text { production, however in the light of ongoing contract and procurement activities, specific } \\ \text { product names and associated MSDS cannot be provided at this point. Some examples } \\ \text { are attached for reference purposes in Appendix E of the ESIA, however actual names of } \\ \text { the products can change depending on drilling and operational requirements. } \\ \text { Internal corrosion management requirements will define selection of pipeline material. }\end{array} \\ \text { Chapter 4: Project } \\ \text { Description and } \\ \text { Alternatives }\end{array}\right\} \begin{array}{l}\text { Appendix E } \\ \text { Chapter 12: Waste }\end{array}\right\}$

| NEMA Comments |  | Response | Relevant Chapter of ESIA |
| :---: | :---: | :---: | :---: |
| i) | The report should include proposals to comprehensively address the impacts of the project through its life cycle. | Noted. The key project phases defined within the ESIA are: Site Preparation and Enabling Works; Construction and Pre-Commissioning; Commissioning and Operations; and Decommissioning. Potential impacts and enhancement and mitigation measures have been identified for each phase of the project, throughout its life cycle. Due to the uncertainties around the exact plans for the project decommissioning at this stage, impact predictions have been largely based on the same as those for the Construction and PreCommissioning phase. | Chapter 4: Project Description and Alternatives; and <br> Contained within each baseline section of each Technical Chapter <br> Chapter 23: ESMP |
| ii) | The mitigation hierarchy should be considered while proposing mitigation actions. Avoidance should be given first consideration while offsets should be a last option. | The mitigation hierarchy of avoid, minimise, restore and offset has been fundamentally used in the development of the ESIA. | Chapter 3: ESIA Methodology <br> Chapter 4: Project Description and Alternatives <br> Contained within each baseline section of each Technical Chapter |
| iii) | The EIA should identify all possible waste streams and develop a comprehensive waste management plan for the project. This should include for the different waste streams; onsite waste handling, storage, transportation, treatment and final disposal or reuse/recycling with waste tracking mechanisms. Explore and propose alternatives for the on-site handling of drilling waste. | The ESIA provides details on the current Waste Strategy and estimates on waste types and volumes. Additionally, a dedicated Waste Map of all anticipated waste produced as part of the Project has been prepared, a summary of which is contained within the ESIA. A detailed Waste Management Strategy for the whole Project is currently being developed and will be used to develop a detailed Waste Management Plan for the Project. | Chapter 4: Project Description and Alternatives; <br> Chapter 12: Waste |
| iv) | In regard to treatment and disposal of waste drill cuttings and other potentially hazardous waste likely to be generated from the project operations, the treatment and disposal methods should be clearly described in the EIA as well as measures to mitigate and monitor environmental impacts. The expected outcome from the treatment process to render the waste suitable for other proposed uses, particularly in regard to residual drilling fluids (particularly Nonaqueous drilling fluids (NADFs) on the cuttings, should be described. Note that the proposed methods | The drilling strategy is planned in line with the waste minimisation strategy, considering that the slim hole architecture reduces drill cuttings (waste) volumes by 30\% (compared to standard well dimensions). <br> Drill fluids will be reused thus reducing amount of hazardous fluids for disposal. <br> A number of options were considered for drilling cuttings management and possible options have been listed in the ESIA. The measures associated with the management of waste including drilling have also been indicated in the report. | Chapter 4: Project Description and Alternatives; <br> Chapter 12: Waste |


|  | of disposal should be applicable within the local regulatory context. Drilling fluids and cuttings management therefore requires thorough assessment of all possible alternatives and objective justification for the selected options. | A detailed Waste Management Strategy for the whole Project is currently being developed in consideration of regulatory context, existing capacity and capability to manage hazardous waste. |  |
| :---: | :---: | :---: | :---: |
| v) | Ensure that all waste water generated from the operation of the project is treated to meet the required standards prior to disposal. According to the scoping report there seems to be a mis-match between the project water usage and the capacity of the waste water treatment facility. All waste water needs to be accounted for and the capacity and efficiency (expected quality and effluent) of the treatment facility described. Re-injection facilities including how leakages from the well will be prevented and alternative methods of disposal if water cannot be reinjected should also be clearly described. <br> Environmental effects of discharges from pipeline testing and cleaning should also be assessment and appropriate management measures proposed. | The majority of the water will be used by the Project during production phase for enhanced oil recovery (water injection). Where feasible, water used for precommissioning activities will also be re-injected. <br> The Project Proponents will engineer and procure facilities suitable for water treatment at the Industrial area which will be of the sufficient capacity and will ensure that water is treated to meet the national standards. Existing Waste Water Treatment Plants at the camps will be upgraded if required based on further assessment. | Chapter 4: Project Description and Alternatives; <br> Chapter 12: Waste <br> Chapter 10: Surface Water. |
| ix) | In regard to the pipeline, a leak detection system should also be described. | Fibre optic cable (FOC) installed along the full length of the pipeline will have leak detection functionality. | Chapter 4: Project Description and Alternatives; |
| x) | Drilling and production facilities should be designed for minimum noise and air emissions, The EIA should adequately assess plans for well testing, alternative methods for well testing and expected emissions and/ or discharges relates to these. | The FEED has been done with due consideration of the acceptable noise and air emissions by the national standards. As such prescribed equipment has been proposed with the aim of meeting these standards, as far as reasonably practicable, particularly with consideration of working in MFNP. <br> Main power generation equipment has been selected based on operational requirements and BAT and EHS Guidelines thus minimizing air emissions from main combustion equipment. There will be no routine well testing after wells are completed. <br> Modelling for air emissions demonstrates compliance with applicable ELVs and ambient air quality standards. <br> For the equipment at CPF a rule of 85 dBA at 1 m from the equipment will be adopted. | Chapter 4: Project Description and Alternatives; <br> Chapter 6: Air Quality and Climate; and <br> Chapter 7: Noise and Vibration; |
| xi) | Ecosystem services for environmental resources such as water both to communities and in the national park should be evaluated to assess how the provision of these services will be affected. | A whole suite of ecosystem services have been studied and analysed within the ESIA, including for water provision. These are discussed in detail within the ESIA. | Chapter 19: <br> Ecosystem Services |

xii)

The EIA should comprehensively address the socioeconomic impacts of the project on the livelihood activities within the project areas and its area of influence both during the construction and operation phase. This should take into account seasonal variation of activities such as tourism, fisheries, agriculture and wildlife behaviour/patterns amongst others.
v)

Cumulative impact assessment should clearly define the area of influence based on the identified Valued Ecosystem Components (VECs). Regional impacts should be evaluated given that the project is located in an area with international values and, and Integrated Management Plan developed to address the identified impacts.

In regard to visual impacts (Chapter 8, page 182 of the scoping report), provided that well pads will be located in tourism areas for long periods of time, technology for pumping the oil should be specified and measures to blend these facilities should be identified. The impacts of a high presence of people and more water traffic in an otherwise pristine environment should be assessed in the short term, medium and long term and wherever possible in economic terms.

The ESIA has provided a detailed review of wide range of social and socioeconomic factors and topics for each of the phases of the project.

## Chapter 16: Social; <br> Chapter 18: Health and <br> Chapter 19: <br> Ecosystem Services

## Chapter 21:

Cumulative Impact
Assessment
Chapter 22: Transboundary Impacts

The ESIA includes a dedicated chapter which looks at the potential landscape and visual impacts associated with the Project.
The development of the Project is based on footprint minimisation and production from normally unmanned well pads. It is estimated that each well pad will be visited once per week for routine inspection and maintenance. The FEED has concentrated on reducing the equipment complexity at the well pads to ensure potential impacts associated with manning and intervention are minimised. All fluids will be sent back to the CPF where the fluid separation and treatment will be undertaken. Every well pad will be remotely monitored (CCTV and leak detection). Production activities will be controlled via the Integrated Control and Safety System (ICSS) from the Central Control Room at CPF.

Facilities design has also given due consideration of potential visual impact - The vent stacks have been removed with permanent facilities height at the well pads being no more than 5 m . Bund walls will be in place for the well pads situated in the MFNP. Where possible Project components were located below ground level (e.g. flowlines, wellheads) which will help to minimise the potential impact.

It is anticipated that there will be daily ferry traffic during operations period (estimated 4-6 one way crossings per day) to maintain regular visits to the well pads.

Mitigation measures to try and help further minimise potential adverse impacts are identified.

## Chapter 4: Projec

 Description and Alternatives;
## Chapter 11:

Landscape and
Visual
vii) The two EIA submissions should clearly describe the bridging mechanisms indicating how the two Environmental Management Plans for the respective areas of operation will be implemented to guarantee a joint and successful EIA process and effective implementation of the EIA results into construction, operations and decommissioning/abandonment in the project.

After an extensive review, it has been decided to only submit ONE ESIA for the whole Project, rather than 2 separate documents This decision was made based on a change in the shareholding of the project as well as due to the more efficient and clearer approach of having one ESIA for the ONE Project. This approach will prove to be beneficial to NEMA's review process and help cut down on unnecessary repetition. Further information and justification for this approach is provided within the ESIA.

Chapter 1 Introduction

TILENGA PROJECT ESIA APPENDIX B:
Key Project Component Fact Sheets

This page has intentionally been left blank to allow for double sided printing

## Table of Contents

Introduction ..... 7

1. JBR-01 ..... 8
2. JBR-02 ..... 11
3. JBR-03 ..... 14
4. JBR-04 ..... 17
5. JBR-05 ..... 20
6. JBR-06 ..... 23
7. JBR-07 ..... 26
8. JBR-08 ..... 29
9. JBR-09 ..... 32
10. JBR-10 ..... 35
11. GNA-01 ..... 38
12. GNA-02 ..... 41
13. GNA-03 ..... 45
14. GNA-04 ..... 49
15. KGG-01 ..... 52
16. KGG-03 ..... 55
17. KGG-04 ..... 58
18. KGG-05 ..... 61
19. KGG-06 ..... 64
20. KGG-09 ..... 67
21. KW-01 ..... 70
22. KW-02A ..... 73
23. KW-02B ..... 76
24. NGR-01 ..... 79
25. NGR-02 ..... 82
26. NGR-03A ..... 85
27. NGR-05A ..... 88
28. NGR-06 ..... 91
29. NSO-01 ..... 94
30. NSO-02 ..... 97
31. NSO-03 ..... 100
32. NSO-04 ..... 103
33. NSO-05 ..... 106
34. NSO-06 ..... 109
35. Victoria Nile HDD Crossing (N) - Option 1 ..... 112
36. Victoria Nile HDD Crossing (S) Option 1 ..... 114
37. Victoria Nile HDD Crossing (N) Option 2 ..... 117
38. Victoria Nile HDD Crossing (S) Option 2 ..... 119
39. Water Abstraction Station ..... 122
40. Industrial Area ..... 125
41. Victoria Nile Ferry Crossing (N) ..... 130
42. Victoria Nile Ferry Crossing (S) ..... 132
43. Bugungu Air Strip ..... 134
44. Masindi Airstrip ..... 136
45. Borrow Pits ..... 138
46. Flowlines ..... 139
Annex A Satellite Imagery Major Infrastructure ..... 141
Project Layout ..... 142
A. 1 JBR -01 ..... 143
A. 2 JBR -02. ..... 144
A. 3 JBR -03. ..... 145
A. 4 JBR -04 ..... 146
A. 5 JBR -05 ..... 147
A. 6 JBR -06. ..... 148
A. 7 JBR -07 ..... 149
A. 8 JBR -08 ..... 150
A. 9 JBR -09. ..... 151
A. 10 JBR-10. ..... 152
A. 11 GNA-01 ..... 153
A. 12 GNA-02. ..... 154
A. 13 GNA-03. ..... 155
A. 14 GNA-04 ..... 156
A. 15 KGG-01 ..... 157
A. 16 KGG-03 ..... 158
A. 17 KGG-04 ..... 159
A. 18 KGG-05 ..... 160
A. 19 KGG-06 ..... 161
A. 20 KGG-09 ..... 162
A. 21 KW-01 ..... 163
A. 22 KW-02a ..... 164
A. 23 KW-02b ..... 165
A. 24 NGR-01 ..... 166
A. 25 NGR-02 ..... 167
A. 26 NGR-03A ..... 168
A. 27 NGR-05A ..... 169
A. 28 NSO-01 ..... 170
A. 29 NSO-02. ..... 171
A. 30 NSO-03. ..... 172
A. 31 NSO-04. ..... 173
A. 32 NSO-05. ..... 174
A. 33 NSO-06. ..... 175
A. 34 Victoria Nile HDD Crossing (N\&S)- Option 1 ..... 176
A. 35 Victoria Nile HDD Crossing (N\&S)- Option 2 ..... 177
A. 36 Water Abstraction Station ..... 178
A. 37 Industrial Area ..... 179
A. 38 Nile Ferry Crossing (N\&S) ..... 180
A. 39 Bugungu Airstrip ..... 181
A. 40 Masindi Vehicle Check Point ..... 182
Annex B Satellite Imagery of Borrow Pits ..... 184
Borrow Pit Overview ..... 185
B. 1 UWA Begeri Park Borrow Pit ..... 187
B. 2 Ajigo Borrow Pit 1 ..... 188
B. 3 Uduku Borrow Pit 1 ..... 189
B. 4 Kisomere Borrow Pit 1 ..... 190
B. 5 Kisomere Borrow Pit 2 ..... 191
B. 6 Kisomere Borrow Pit 3 ..... 192
B. 7 Kisomere Borrow Pit 4 ..... 193
B. 8 Kisomere Borrow Pit 5 ..... 194
B. 9 Kisomere Borrow Pit 6 ..... 195
B. 10 Kisomere Community ..... 196
B. 11 UWA Park Borrow Pit (Alternative) ..... 197
B. 12 Kilyango Borrow Pit ..... 198
B. 13 Avogera Borrow Pit ..... 199
B. 14 Got Apwoyo Borrow Pit 1 ..... 200
B. 15 Got Apwoyo Borrow Pit 2 ..... 201
B. 16 Til 1 Borrow Pit ..... 202
B. 17 UWA Park Borrow Pit 3 and 4 ..... 203
B. 18 Pakuba Airstrip Borrow Pit 2 ..... 204
B. 19 Jobi 6-3 Borrow Pit ..... 205
B. 20 Buligi Track Borrow Pit. ..... 206
Annex C Satellite Imagery of Flowlines ..... 209
Flowlines Overview ..... 210
C. 1 GNA-01 to CPF ..... 211
C. 2 GNA-02 to GNA-04 ..... 212
C. 3 GNA-04 to GNA-01 ..... 213
C. 4 GNA-04 to GNA-03 ..... 214
C. 5 KGG-01 to KGG-04 ..... 215
C. 6 KGG-03 to KGG-01 ..... 216
C. 7 KGG-04- to NSO-04 ..... 217
C. 8 KGG-05 to NSO-02 ..... 218
C. 9 KGG-06 to KGG-04 ..... 219
C. 10 KGG-09 to KGG-04 ..... 220
C. 11 KW01 to KW-02A ..... 221
C. 12 KW02A to KW02B ..... 222
C. 13 KW-02B to NGR-06 ..... 223
C. 14 NIV to GNA 01 ..... 224
C. 15 NIV to NGR01 ..... 225
C. 16 NGR-01 to CPF ..... 226
C. 17 NGR-02 to NGR-01 ..... 227
C. 18 NGR-03A to NGR-05A ..... 228
C. 19 NGR-05A to CPF ..... 229
C. 20 NGR-06 to NGR-05A ..... 230
C. 21 NSO-01 to NSO-05 ..... 231
C. 22 NSO-02 to NSO-06 ..... 232
C. 23 NSO-03 to CPF ..... 233
C. 24 NSO-04 to NSO-03 ..... 234
C. 25 NSO-05 to NSO-03 ..... 235
C. 26 NSO-06 to NSO-01 ..... 236
C. 27 Water station to KW-02B. ..... 237
C. 28 JBR-01 to NIV (Opt 1) ..... 238
C. 29 JBR-02 to JBR-01 ..... 239
C. 30 JBR-03 to JBR-01 ..... 240
C. 31 JBR-04 to JBR-03 ..... 241
C. 32 JBR-05 to JBR-03 ..... 242
C. 33 JBR-06 to JBR-05 ..... 243
C. 34 JBR-07 to JBR-06 ..... 244
C. 35 JBR-08 to JBR-07 ..... 245
C. 36 JBR-09 to JBR-08 ..... 246
C. 37 JBR-10 to JBR-01 - Alt. ..... 247C. 38 JBR10 to NIV (NXN) New Crossing North248

## Introduction

The Factsheets have been produced to provide a concise summary of the main social, biological and physical features of the main components of the Tilenga Development project. The information has been gathered from primary and secondary data sources that were utilized for the in the main Tilenga ESIA report. More detailed information is provided in the relevant chapters of the main report.

This appendix incudes site specific information for the main project components which include:

- Well Pads;
- Industrial Area;
- Water Abstraction Station;
- Victoria Nile HDD Crossing ;
- Victoria Nile Ferry Crossing;
- Bugungu Air Strip
- Masindi Vehicle Check Point;
- Borrow Pits; and
- Flowlines

Access roads are not included as not all of the access roads were surveyed because the locations were not finalized at the time of the surveys. In the north, most access roads will be along the flowlines. In the south, the access roads in many cases also follow the flowlines or are short distances to existing roads. The satellite imagery is of sufficient detail to be able to see the general site conditions. The social, biological and physical features noted for the well pads, borrow pits and the flowlines will be considered and assumed to be present and all mitigation measures adopted as appropriate.

With respect to culturally important flora, where there are English names, e.g. sausage tree, Aloe Vera, tamarind, sisal these are provided. Scientific or English translation names are provided for the reader where we know them for local dialect names that are provided. In some cases all we know is a local name in one of several dialects - if we are not certain of the Latin name, it is not provided as this would be misleading. Most of the time there is no English name, as these plants are rare/nonexistent in countries that were English speaking prior to the colonial period, and/or have no industrial/mass economic use (e.g. sisal) exploited by the colonists so have not been given an English name.

Mapping of the individual components has been provided showing the social, biological and physical features of each of the project components. The purpose of the mapping is to provide an overview of the results of the biodiversity and social surveys to inform the impact assessment and the development of mitigation measures. The Factsheet mapping is aligned with the information contain in the report and show:

- Administrative boundaries - parish and village;
- Social Receptors - settlements, schools, lodges, health care facilities, places of worship and DWRM boreholes;
- Physical Receptors - water course , cattle corridors and roads; and
- Biological features.

For clarity, symbols for numerous specific biological and social features have been replaced by simple dots. Some features are more important than others for different reasons and the details of which are explained in the relevant ESIA Chapters. More detailed mapping is provided in Appendix N (Biodiversity) and Appendix I (Noise) - which use symbols as necessary. The current mapping is sufficient for its intended purpose.


|  | inyperintiina-Builocstyisis Grassianu' <br> Hyperthelia-Bulbostylis-Chamaecrista Grassland with sparse trees Sporobolus-Chamaecrista Open Grassland Sporobolus-Chamaecrista-Bulbostylis Open Grassland |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive <br> Species | None identified |  |  |  |  |  |
| Flora - Protected Species | No threatened, rare or range-restricted species was recorded at the site. |  |  |  |  |  |
| Priority Species | The area had sizable herds of Uganda Kob, Buffalo, Hartebeest, Oribi and Warthog. Giraffe and Elephant were also present in smaller numbers. Signs of Lion and Hyena were also recorded in this area. Two amphibian and seven reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of 30 $45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) atributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no borings at this site. Soil Boring Log for DWD28663; Aquifer type is fine sand. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD28633 | 331604 | 251265 | Within land acquisition |  |
|  | Borehole Data | Depth (m) | Static Water <br> Level (m) | Water Level (m) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | 69 | 27.81 | - | 5.15-12.92 | 1.12-2.81 |
|  | Water availability | Specific Capacity $4.6-6.8 \mathrm{~m}^{2} / \mathrm{hr}$ |  |  |  |  |
|  | Water Quality | There are no water quality reports at this site. |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 470m <br> Wetland, 1,088m |  |  |  |  |
|  | Distance to <br> Lake/River | Victoria Nile, 2,140m |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict |  | Subcounty |  | Parish | Village |





|  |  | noted.. <br> Heaps of laterite, a raw material used for iron smelting, were recorded at one site. Daub <br> was noted in two places, which is significant in the MFNP area which was evacuated over 100 years ago, as it may indicate a former settlement area <br> Medicinal and cultural uses of plants <br> The medicinal plants included lenga, uduk and kulumbero. Lenga is associated with cultural sites. Kulumbero treats eye problems, while uduk trees are mainly for construction. <br> Faunal remains <br> Recent materials in the form of faunal remains were also observed especially animal bones. The parts of bones identified were teeth, hippo tibia and long rib bones. Small shells were also common in the site. The faunal remains were from animals killed by other animals or those that died naturally, and are of no archaeological or palaeontological significance. |
| :---: | :---: | :---: |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA07 | MFNP North, Savanna Plateau <br> Key local characteristics: <br> - This LCA is a large scale upland plateau. This location is gently undulating. <br> - This is a relatively undisturbed landscape but close to local tracks part of the Buligi Circuit which is a key recreational asset. <br> - Landcover within this site is largely characteristic of the LCA as a whole. <br> - Although adjacent to the existing track, this site is void of infrastructure. <br> - Views are wide angled and occasionally fragmented by trees. |



| species | staplianus |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phytosociological description (within plot) | Hyperthelia-Ctenium-Bulbostylis Open Grassland <br> Hyperthelia-Ctenium-Eragrostis Open Grassland <br> Hyperthelia-Ctenium-Eragrostis-Sporobolus Open Grassland <br> Sporobolus Open Grassland <br> Sporobolus-Eragrostis-Ctenium Open Grassland <br> Sporobolus-Hyperthelia Open Grassland |  |  |  |  |  |
| Alien/Invasive Species | None identified |  |  |  |  |  |
| Flora - Protected Species | No threatened, rare or range-restricted species was recorded at the site and no other species of conservation concern were recorded. |  |  |  |  |  |
| Priority Species | This area presented the least oportunities for small mammals. It had large herds of Uganda Kob, Buffalo, good numbers of Hartebeest, Oribi and Warthogs. The area has great potential for lekking by Kob and for grazing by the ungulates. One amphibian and eight reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no borings at this site. Soil lithology for DWD35655 is provide below; Lake Albert Sediments, no bedrock within the borehole depth; aquifer dark grey sand |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD35655 | 332594 | 253500 | 517 m |  |
|  | Borehole <br> Data | Depth (m) | Static <br> Water <br> Level (m) | Pumping Water Level (m) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m)/Specific Cap ( $\mathrm{m}^{3} / \mathrm{hr} / \mathrm{m}$ ) and Transmissivity ( $\mathrm{m}^{2} /$ day) |
|  |  | 90 | 53.37 | 60.65 | 10.0 | $\begin{gathered} 7.28 \\ 1.41 \\ 266.4 \end{gathered}$ |
|  | Water availability | Static Water Level (m.b.g.l) $\frac{Y \text { Yield }\left(\mathrm{m}^{3} / \mathrm{hr}\right)}{\text { Average }-7}$ <br> Average -36 Median -5 <br> Median -37 Max -22 <br> Max -64 Min -0.5 |  |  |  |  |
|  | Water <br> Quality | There are no current water quality reports available. |  |  |  |  |
| Surface Water | Closest <br> Surface | Not identified, 245m <br> Wetland, 1,500m |  |  |  |  |


| Vöater |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Distance to Lake/River | Victoria Nile, 4,699m |  |  |
| Socioeconomic Characteristics |  |  |  |  |
| Social | Distict | Subcounty | Parish | Village |
|  | Nwoya | Purongo | Murchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details | Distance to Well Pad (m) |  |
|  |  | Pakuba Lodge | 4,957m |  |
| Archaeology and Cultural Heritage | Date of survey $2014$ | Archaeological remains <br> The survey identified archaeological remains comprising a Late Stone Age core and struck stone flakes. |  |  |
| Landscape and Visual Amenity | Landscape Character <br> Area <br> LCA07 | MFNP North, Savanna Plateau <br> Key local characteristics: <br> - This LCA is a large scale upland plateau. This location is gently sloping. <br> - This is a relatively undisturbed landscape and the belt of trees between the track and the site enhances the sense of wildness that can be experienced in this location. <br> - Landcover within this site is largely open grassland with few trees and typical of the LCA as a whole. <br> - This site is void of infrastructure. <br> - Views are wide angled and panoramic. |  |  |



| species |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phytosociological description (within plot) | Acacia seasonally Flooded Wooded Grassland <br> Acacia-Harrisonia-Combretum shrubland <br> Acacia-Setaria Seasonally Flooded Wooded Grassland <br> Hyperthelia-Ctenium-Eragrostis Open Grassland <br> Hyperthelia-Pseudocedrella Open Grassland |  |  |  |  |  |
| Alien/Invasive Species | None identified |  |  |  |  |  |
| Flora - Protected Species | No threatened, rare or range-restricted species was recorded at the site and no other species of conservation concern were recorded. |  |  |  |  |  |
| Priority Species | The area had large herds of Uganda Kob, Buffalo, good numbers of Hartebeest, Elephant, Giraffe, Oribi and Warthogs. The area has great potential for lekking by Kob and for grazing by the ungulates.Five reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of 30-45 $d B(A)$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no boreholes in the vicinity of this well pad. In general, Superficial deposits including sandy clays with a thickness of $20-30 \mathrm{~m}$ interbedded with clays with thickness $10-15 \mathrm{~m}$ are found over much of the area; in some places boreholes have been drilled beyond 100 m without encountering bedrock. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | None | - | - | None within 1 km |  |
|  | Borehole <br> Data | Depth <br> (m) | Static <br> Water <br> Level (m.b.g.l) | Pumping <br> Water <br> Level <br> (m.b.g.I) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m)/Specific Cap ( $\mathrm{m} 3 / \mathrm{hr} / \mathrm{m}$ ) and Transmissivity (m2/day) |
|  |  | - | - | - | - | -- |
|  | Water availability | There are no boreholes at the well pad site. Based on available bore logs for the North Nile (MFNP): |  |  |  |  |
|  | Water <br> Quality | There are no known boreholes withn 1 km . |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 154m Wetland, 148m |  |  |  |  |
|  | $\begin{aligned} & \text { Distance } \\ & \text { to } \\ & \text { Lake/River } \end{aligned}$ | Victoria Nile, 4,530m |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |


| Soctai | Distici |  | Suiocounty |  | Farisin | vinilage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nwoya |  | Purongo |  | Murchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details |  | Distance to Well Pad (m) |  |  |
|  |  | Baker's Lodge |  | 5,246m |  |  |
| Archaeology and Cultural Heritage | Date of survey: $2013$ | Chance find sites were verified by the Department of Museums and Monuments. Twelve archaeological sites were identified, including Late Stone Age quartz cores and flakes. Pottery sherds and pottery scatters included Late Stone Age or Neolithic Kansyore pottery and roulette-decorated Late Iron Age pottery. |  |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA07 | - This LCA is a large scale upland plateau. This location is gently sloping. <br> - This is a relatively undisturbed landscape and the belt of trees between the track and the site enhances the sense of wildness that can be experienced in this location. <br> - Landcover within this site is largely open grassland with few trees and typical of the LCA as a whole. <br> - This site is void of infrastructure. <br> - Views are wide angled and panoramic |  |  |  |  |



| Keceptor (distance) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})($ Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type <br> There are no borings at this site. There is a boring log for DWD35662. The borehole is also identified as JobiE-5.; aquifer type sand. <br> The soils are identified as Lake Albert Sediments |  |  |  |  |  |
| Hydrology | Closest <br> Known <br> Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD35662 | 332139 256025 |  | 683 |  |
|  | Borehole Data | Depth (m) | Static <br> Water <br> Level <br> (m.b.g.I) | Pumping <br> Water <br> Level <br> (m.b.g.I) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m)/Specific <br> Cap (m3/hr/m) and <br> Transmissivity (m2/day) |
|  |  | 100 | 74.13 | 83.62 | 4.2 | $\begin{gathered} 9.49 \\ 0.45 \\ 25 \end{gathered}$ |
|  | Water availability | There are no boreholes at the well pad site. Based on available bore logs for the North Nile (MFNP): |  |  |  |  |
|  | Water <br> Quality | There are no current water quality reports for this well. |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 605m Wetland, 1,106m |  |  |  |  |
|  | $\begin{aligned} & \text { Distance } \\ & \text { to } \\ & \text { Lake/River } \end{aligned}$ | Albert Nile, 4,067m |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict |  | Subcounty |  | Parish | Village |
|  | Nwoya |  | Purongo |  | Murchison Falls NP | - |
|  | Closest | Receptor Details |  | Distance to Well Pad (m) |  |  |


|  | रecepior | Fakuioa Loúge ${ }^{\text {a }}$ |
| :---: | :---: | :---: |
| Archaeology and Cultural Heritage | Date of survey <br> 2014 | All find spots comprised finds of exposed animal bones. These are likely to be relatively recent and are of no archaeological or palaeontological significance. No archaeological remains were identified. |
| Landscape and Visual Amenity | Landscape Character Area LCA07 | MFNP North, Savanna Plateau <br> Key local characteristics: <br> - This LCA is a large scale upland plateau. This location is elevated but largely flat. <br> - This site is largely undisturbed but is adjacent to the Pakubu airstrip is a notable physical influence which reduce the levels of wilderness that is typical of the wider landscape. <br> - Landcover within this site is largely open grassland with very few trees and is typical of the LCA as a whole. <br> - This site is void of infrastructure. <br> - Views are wide angled, panoramic. Views to the west, east and south are iconic of MFNP. <br> - The UWA rangers working within this part of MFNP have strong associations and connections with this landscape and the landscape is highly revered. |



| Fauna - Friority <br> Species | Giraffe Five amphibian and two reptile species were recorded at this site. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of 30-45 dB(A) (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no boreholes at this site. Lithology for borehole DWD25308 provided below. <br> Lithology <br> 0-10m Black topsoil <br> 10-15m Laterite <br> 15-30m Coarse multi-coloured sand <br> 30-70m Fine grained sand <br> 70-92m Brown medium sand |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD25308 | 334077 | 256184 | 654 |  |
|  | Borehole Data | Depth (m) | Static <br> Water <br> Level (m.b.g.l) | Water <br> Level (m.b.g.l) | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | - | - | 67.5- | - | - |
|  | Water availability | There are no Nile (MFNP): <br> Sta <br> Ave <br> Me <br> Ma <br> Min | oreholes at $\begin{aligned} & \text { c Water Lev } \\ & \hline \text { age }-36 \\ & \text { an }-37 \\ & -64 \\ & 21 \end{aligned}$ | well pad site a.b.g.l) | Based on available $\begin{aligned} & \frac{\mathrm{ld} \mathrm{~m}^{3} / \mathrm{hr}}{\text { erage }-7} \\ & \text { dian }-5 \\ & x-22 \\ & -0.5 \end{aligned}$ | ore logs for the North |
|  | Water Quality | There are no water quality reports for this well. |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 574m Wetland, 277m |  |  |  |  |
|  | Distance to Lake/River | Albert Nile, 4,402m |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict |  | Subcounty |  | Parish | Village |
|  | Nwoya |  | Purongo |  | rchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details |  |  | Distance to Well Pad (m) |  |
|  |  | Pakuba Lodge |  | 4,589m |  |  |
| Archaeology and Cultural Heritage | Survey Date <br> 5th December 2016. | Archaeological remains <br> The lithic assemblage ranged from the Middle Stone Age (MSA) to the LSA period. It included a Levallois side scraper, a convex side scraper and a pyramidal core. All lithic artefacts were of quartz. The presence of prematurely abandoned cores suggests plentiful locally available raw materials. <br> Three large and widespread pottery scatters were noted, as well as many isolated findspots. The pottery was either undecorated or highly abraded, which made dating difficult. The coherent, well-preserved and complex assemblages reflect the lack of |  |  |  |  |


|  |  | ground distutioance in ine inifinf over tile past centiury. The degree of ajorasion noted on pottery sherds may indicate that settlements in this area were abandoned prior to the establishment of the settlements that were evacuated. <br> Pottery was associated with daub from former settlement structures pre-dating the evacuation of the MFNP area in the early 20th century. |
| :---: | :---: | :---: |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA07 | MFNP North, Savanna Plateau <br> Key local characteristics: <br> - This LCA is a large scale upland plateau. This location is elevated but largely flat site. <br> - This site is largely undisturbed but is adjacent to the Pakubu airstrip is a notable physical influence which reduce the levels of wilderness that is typical of the wider landscape. <br> - Landcover within this site is largely open grassland with very few trees and is typical of the LCA as a whole. <br> - This site is void of infrastructure. <br> - Views are wide angled, panoramic. Views to the west, east and south are iconic of MFNP. <br> - The UWA rangers working within this part of MFNP have strong associations and connections with this landscape and the landscape is highly revered. |






|  |  <br> Hyperthelia-Ctenium-Eragrostis Open Grassland <br> Hyperthelia-Digitaria- Acacia Grassland <br> Hyperthelia-Digitaria-Borassus-Balanites Grassland |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive Species | There are two invasive plant species, Salvinia molesta and Eichhornia crassipes in a wetland that could proliferate with disturbance. |  |  |  |  |  |
| Flora - Protected Species | Species of conservation concern were recorded Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |  |  |  |
| Fauna - Priority Species | Area had good populations of Uganda Kob, Oribi, Hartebeest, Buffalo and Warthog. Four reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45$ $d B(A)$ (Leq) were noted within MFNP. Night time levels are higher; $33-49 \mathrm{~dB}(\mathrm{~A})$ (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no borings at this ste. The closest boring is DWD 29473 characterized as Sand (aquiferfractured bedrock). It is located between JBR-08 and JBR-09. <br> Lithology <br> $0-5 \mathrm{~m}$ - Black sandy <br> 5-12m - Greyish Brown sand <br> 12-15m - Dark grey sand <br> 15-20m- Greyish brown sand <br> $20-25 \mathrm{~m}$ - Dark grey sand mixed with brown sand <br> 29-29m -Light brown fine sand <br> 29-50m - Dark brown sand <br> 50-66m- Grayish brown sandy clay <br> $66-70 \mathrm{~m}$ - Brownish grey sandy clay <br> 70-90m - Greenish grey sandy clay |  |  |  |  |
| Hydrology | Closest Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | None | - | - | None within 1 km |  |
|  | Borehole Data | Depth <br> (m) | Static Water Level (m.b.g.l.) | Water Level (m.b.g.I.) | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  |  | - | - |  | - |
|  | Water availability | There are no boreholes at the well pad site. Based on available bore logs for the North Nile (MFNP): |  |  |  |  |
|  | Water | No water current water quality report available |  |  |  |  |




|  | Dorassus-Ácacia Ẅvoded'Grasstanlí Borassus-Acacia-Hyperthelia Wooded Grassland Crateva-Combretum-Borassus Open Woodland |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive Species | None identified |  |  |  |  |  |
| Flora - Protected Species | No threatened, rare or range-restricted species was recorded at the site and no other species of conservation concern were recorded at this site. |  |  |  |  |  |
| Fauna - Priority Species | The area had a good population of Uganda Kob, Hartebeest, Buffalo, Oribi, Elephants, Olive Baboons and few Waterbucks. This site is particularly important for elephants. Eight amphibian and four reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of 30-45 $\mathrm{dB}(\mathrm{A})$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no borings at this site. The closest boring is DWD 29473 characterized as Sand (aquiferfractured bedrock). It is located between JBR-08 and JBR-09. <br> Lithology <br> 0-5m- Black sandy <br> 5-12m - Greyish Brown sand <br> 12-15m - Dark grey sand <br> 15-20m- Greyish brown sand <br> 20-25m- Dark grey sand mixed with brown sand <br> 29-29m -Light brown fine sand <br> 29-50m - Dark brown sand <br> 50-66m- Grayish brown sandy clay <br> 66-70m - Brownish grey sandy clay <br> 70-90m - Greenish grey sandy clay |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | 29473 | 261098 N | 334326E | 607m |  |
|  | Borehole Data | Depth (m) | Static Water Level (m.b.g.l.) | Water Level (m.b.g.l.) | Yield $\mathrm{m}^{\mathbf{3}} / \mathrm{hr}$ | Drawdown (m) |
|  |  | 80 | $\begin{aligned} & 55 \\ & 70 \end{aligned}$ | NA | 15 | NA |
|  | Water availability | There are no boreholes at the well pad site. Based on available bore logs for the North Nile (MFNP) |  |  |  |  |
|  | Water <br> Quality | There are no current water quality reports for this well. |  |  |  |  |
| Surface Water | Closest <br> Surface | Not identified, 270m Wetland, 651m |  |  |  |  |


| Ẅater |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Distance to Lake/River | Albert Nile, 2,354m |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |
| Social | Distict |  | Subcounty | Parish | Village |
|  | Nwoya |  | Purongo | Murchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details |  | Distance to Well Pad (m) |  |
|  |  | Pakuba Lodge |  | 2,818m |  |
| Archaeology and Cultural Heritage | Date of survey $2014$ | Archaeological remains <br> The survey identified a single find of a Late Stone Age quartz whole flake. |  |  |  |
| Landscape and Visual Amenity | Landscape Character Area LCA07 | MFNP North, Savanna Plateau <br> Key local characteristics: <br> - This LCA is a large scale upland plateau and similar to JBR-07 this site is gently undulating. <br> - This site is largely undisturbed and a strong sense of wilderness prevails which is typical of the wider landscape. <br> - Landcover within this site is largely open grassland and numerous mature trees largely typical of the LCA as a whole. There are however a number of occasional watercourses to the north and south of the site. <br> - This site is void of infrastructure and visually separated from the track to the north-west. . <br> - Views wide angled but fragmented by the numerous trees. |  |  |  |



|  | ssum | inic | 1411 sp | utis | us undi | unluaia, Veplis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dominant <br> Herbaceous species | Commelina benghalensis, Cyperus dubius-ferrugineus, Dichondra repens, Heteropogon, Hyperthelia dissoluta;Marsidenia rubicunda;, Ruellea prostrata, Sansevieria nilotica, Sporobolus pyramidalis, Sansevieria dawei |  |  |  |  |  |
| Phytosociological description (within plot) | Acacia-Harrisonia-Maytenus-Vepris Open Bushland <br> Acacia-Maytenus-Harrisonia-Capparis Bushland with Thicket <br> Acacia-Vepris-Maytenus-Capparis Dense Bushland <br> Harrisonia-Cadaba-Capparis Bushland-Bushed Grassland mosaic <br> Harrisonia-Cadaba-Combretum Bushland-Bushed Grassland <br> Harrisonia-Capparis Bushland-Bushed Grassland <br> Harrisonia-Capparis-Acacia Bushland-Bushed Grassland mosaic |  |  |  |  |  |
| Invasive Species | None identified |  |  |  |  |  |
| Flora - Protected Species | Secies of conservation concern were recorded Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |  |  |  |
| Fauna - Priority Species | The area had mostly signs of Hippo, Elephant and Giraffe and a few signs of the smaller ungulates. Eight reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; $33-49 \mathrm{~dB}$ (A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no borings at this site. The closest boring is identified as DWRM 4097. The boring log notes the location as Rii-B which is in the vicinity of JBR-10. Lithology is noted as Lake Albert Sediments comprised of - Soil, clayey sand, sand, clayey sand then clay (aquifer - sand). |  |  |  |  |
| Hydrology | Closest <br> Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | 40971 | 329368E | 248179N | 297m |  |
|  | Borehole Data | Depth <br> (m) | Static <br> Water <br> Level <br> (m.b.g.I.) | Pumping Water Level (m.b.g.I.) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m)/Specific Cap ( $\mathrm{m}^{3} / \mathrm{hr} / \mathrm{m}$ ) and Transmissivity ( $\mathrm{m}^{2} /$ day) |
|  |  | 54 | 0.8 | 12.83 | 9 | $\begin{aligned} & 2.02 \\ & 4.46 \\ & 226 \end{aligned}$ |
|  | Water availability | There are no boreholes at the well pad site. Based on available bore logs for the North Nile (MFNP): |  |  |  |  |


|  |  | $\begin{aligned} & \text { Modian_37 } \\ & \text { Max-64 } \\ & \text { Min - } 21 \end{aligned}$ | $\begin{aligned} & \text { Modian_5 } \\ & \begin{array}{l} \text { Max }-15 \\ \text { Min }-0.5 \end{array} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Water Quality | Iron concentrations exceed Ugandan Standards ( Date of analysis - 2013) |  |  |
| Surface Water | Closest <br> Surface Water | Not identified, 2,116m Wetland, 768m |  |  |
|  | Distance to Lake/River | Victoria Nile, 1,122m |  |  |
| Socioeconomic Characteristics |  |  |  |  |
| Social | Distict | t Subcounty | Parish | Village |
|  | Nwoya | Purongo | Murchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details | Distance to Well Pad (m) |  |
|  |  | Africana Safari Lodge | 3,713m |  |
| Archaeology and Cultural Heritage | Survey <br> Date <br> 2014 <br> 27th June <br> 2017 | Archaeological remains <br> Field survey identified pottery, lithics and daub. Lithics included cores and a sandstone grinding stone. The grinding stone is made from sandstone, which may have been imported to the MFNP area. Concentrations of pottery including LIA roulette-decorated pottery were present, as well as individual sherds. Sparse daub was recorded, and may indicate former settlement areas. <br> Faunal remains <br> Terrestrial shell and scatters of animal bone from wild animals that died naturally were present. These have no archaeological or palaeontological significance. <br> Medicinal and cultural uses of plants <br> The medicinal plants identified included: Lenga, Kulumbero, Mbumbuula, cactus and Mukabyakabya. Trees traditionally used for construction such as Uduk trees were also common in JBR-10. Lenga is usually associated with traditional worship sites and is sometimes planted with other crops to ensure good yields. Kulumbero is used to treat eye diseases, Mbumbuula for wounds and cactus sap for trapping birds. These plants are common in the Buliisa region. |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA04 | Victoria Nile Corridor <br> Key local characteristics: <br> - This site is largely comprised of dense scrub and ravine forest across the north Bank and in close proximity to the Murchison Falls-Albert Delta Wetland System (RAMSAR site). <br> - This site is largely undisturbed and a strong sense of wilderness prevails which is typical of the wider landscape. <br> - Landcover within this site is dominated by dense forestry south of the main Albert track heading west. <br> - This site is void of infrastructure and vegetation separates the site from the track to the. <br> - Views contained by the dense forestry. |  |  |



| Quality |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Closet Air <br> Receptor <br> (distance) | Settement to west in the village of Kisomere, 78m |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settement to west in the village of Kisomere, 78 m |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |
| 0-25m | None | None | None | None |
| 25-85m | Approx 1 settement to west in the village of Kisomere, 78 m | None | None | None |
| 85-375m | Approx 150 settlements. M ajority to north east, east and west. Village of Kisomere. 89m-375m | None | Alleluyah Church 355m to north. <br> Lam te Kwar Church 200m to south east | Kisomere Pri. School approx. 320m to north west |

## Wellpad (operational phase, NIGHT)

| 0-130m | Approx. 7 settlements to north and south west in village of Kisomere |  | None |  | None |  | None |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130-250m | Approx. 66 settlements surrounding the site in village of Kisomere |  | None |  | Lam te Kwar Church 200m to south east |  | None |
| 250-450m | Approx. 200 settlements to north east and south in village of Kisomere |  | None | Allelu <br> Kis Ugan | h Church north. mere Ch a 416 m west |  | Kisomere Pri. School approx. 320m to north west |
| Soils and Geology | Soil Type | There are no borings at this site. Lithological data for <br> Lithology <br> $0-1 \mathrm{~m}$ - Brown sandy topsoil <br> 1-4m - Reddish/yellowish clay <br> $4-30 \mathrm{~m}$ - Brown sticky sandy clay with gravel <br> $30-41 \mathrm{~m}$ Brown clayed sand with gravels <br> $41-52 \mathrm{~m}$ - Brown clay with gravels <br> 52-68m - Brown course sand and sandstone <br> $68-70 \mathrm{~m}$ - Greyish brown clay <br> $70-80 \mathrm{~m}$ - Brown sand and sandstone <br> 80-90m -Grayish brown clay <br> 90-93m - Brown fine grain sand <br> 93-105m -Grayish clay |  |  |  |  | is summarized below. |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |  |
|  |  | 16550 | 244352N | 331140E | 216m |  |  |
|  | Borehole Data | Depth (m) | Static Water <br> Level (m.b.g.l.) | Water Level (m.b.g.l) | Yield <br> $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |  |




| Species |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Flora - Protected Species | Species of conservation concern were recorded - <br> Tamarindus indica: Uganda Red List (VU); IUCN (LC) <br> Milicia excelsa (mature tree) - Iroko; IUCN Globally LR/NT; Uganda Red List (EN), CHA Criterion 1e. NFA Reserved species; <br> Albizia grandibracteata: (Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) |  |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |
| Physical Characteristics |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Settlement approx 20 m to south in village of Kilyango |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlement approx 20 m to south in village of Kilyango |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIME) |  |  |  |  |
| 0-25m | 1 settlement approx 20 m to south in village of Kilyango | None | None | None |
| 25-85m | Approx 9 settlements to south. Village of Kilyango. 30-75m | None | None | None |
| 85-375m | Approx 250 settlements in village of Kilyango. Majority to south west. 88m-375m | Kilyango Gods mercy clinic 330 m to south west | Kilyango Church of Uganda - 360m south west Kilyango Full Gospel Church - 215 m north Kilyango Church of God 340 m south west | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |
| 0-130m | Approx. 26 settlements to south and north in village of Kilyango | None | None | None |
| 130-250m | Approx. 100 settlements surrounding in village of Kilyango | None | Kilyango Full Gospel Church -215m north | None |
| 250-450m | Approx. 160 settlements in village of Kilyango | God's mercy clinic - 330m south west | Kilyango Church of Uganda <br> - 360 m south west <br> Kilyango Church of God - <br> 340 m south west <br> Kilyango St. Kizito Chapel - <br> 450m to east <br> Kilyango Pentecostal <br> Church - 400 m south west | None |
| Soils and Geology | Soil Type There are no borings at this site. Borehole data for boring DWRM 21635 is provided below <br> Clay and sand (aquifer type - fractured bedrock) <br> Lithology <br> $0-1 \mathrm{~m}$ Brown sandy topsoil <br> $1-4 \mathrm{~m}$ Reddish/yellowish clay <br> $4-30 \mathrm{~m}$ Brown sticky sandy clay with gravel <br> $30-41 \mathrm{~m}$ Brown clayed sand with gravels <br> $41-52 \mathrm{~m}$ Brown clay with gravels |  |  |  |



|  |  | Kilyango Full GospolChuroh Kilyango St Kizito chapol and Kilyango Church of God <br> Cultural sites $\qquad$ <br> Two abila, traditional family ancestral shrines, were recorded. An Alur sacred tree is located south of the wellpad area. |
| :---: | :---: | :---: |
| Landscape and Visual Amenity | Landscape <br> Character Area <br> LCA02 | Buliisa Lowland Rolling Farmland <br> Key local characteristics: <br> - This site comprises of a series of agricultural crop gardens with occasional trees. <br> - Landform is rolling and fields accessed by local residents who manage the crops. <br> - This site and surrounding context are characterized by self-sufficient farming <br> - Views are largely short distance and fragmented by sporadic vegetation and rolling topography. |



|  | assessedi |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Unnamed church, 95m |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |
| Closest Noise <br> Receptor (distance) | Unnamed church, 95m |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlem |  | Healthc |  | Worship | Education |
| Wellpad (operational phase, DAYTIME) |  |  |  |  |  |  |
| 0-25m | None |  | None |  | None | None |
| 25-85m | None |  | None |  | None | None |
| 85-375m | Approx. 80 settl village of Uduk II. south. 95m | ements in Majority to 375m | None |  | Unnamed church 95 m to south Uduk II Church of God 225 m to south west Uduk II Pentecostal Church - 235m to south west | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |
| 0-130m | Approx. 5 settlements in village of Uduk II |  | None |  | Unnamed church 95 m to south | None |
| 130-250m | Approx 20 settlements in village of Uduk II |  | None $\quad$ Ud |  | Uduk II Church of God 225 m to south west Jduk II Pentecostal Church - 235m to south west | None |
| 0-130m | Approx. 5 settlements in village of Uduk II |  | None $\quad$ U |  | Unnamed church 95 m to south | None |
| Soils and Geology | Soil Type <br> There are no borings at this site. Lithology for Borehole DWRM 17683 is summarized below. <br> Lithology <br> 0-4m Black topsoil and reddish sandy clay <br> 4-21m Sandy clay with gravel <br> 21-25m Course sand <br> 25-27m Clay with gravel <br> 27-45m Fine sand <br> 45-50m Course sand <br> 50-55m Finesand <br> 55-58m Course sand <br> $58-84 \mathrm{~m}$ Fine sand <br> 84-100m Green-grey clay |  |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | 17683 | 331929 N | 241767E | 237 |  |
|  | Borehole <br> Data | Depth <br> (m) | Static Water <br> Level <br> (m.b.g.l.) | Water Level (m.b.g.l.) | Yield Dr <br> $\mathrm{m}^{3} / \mathrm{hr}$  | Drawdown (m) |
|  |  | 100 | 63.9 | NA | NA NA |  |



| Landiscape andu Visual Amenity | Landiscape <br> Character <br> Area <br> LCA02 |  <br> Key local characteristics: <br> - This site comprises of a series of agricultural crop gardens with occasional trees. <br> - Landform is undulating ad fields accessed by local residents who manage the crops. <br> - This site and surrounding context are characterized by self-sufficient farming and pedestrian and vehicular movement influenced by the proximity to Ngwedo. <br> - Views range from mid-range open views to short and channeled views. Shorter range views are fragmented by sporadic vegetation and rolling topography. |
| :---: | :---: | :---: |


| 14. GNA-04 | Well pad in CA1 |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | CA1 |  |  |
| Field | Gunya |  |  |
| Coordinates | - | - |  |
| Elevation (m) | 680 |  |  |
| Terrain | Sloping |  |  |
| Slope (degrees) and Aspect | 2.076308 | Northwest |  |
| Well Pad Area (ha) | 3.9 | 5.9 |  |
| District | Buliisa |  |  |
| CHA habitat type | Modified |  |  |
| Survey date(s) and Type | 4 December 2016 (Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | Site comprises mainly cultivated land immediately south of a settlement in Avogera. |  |  |
| Vegetation type(s) (WCS mapping) | Mainly cultivated land Settlement |  |  |
| Vegetation types recorded (microhabitats) | Gardens <br> Hyparrhenia grassland pockets Isolated Harissonia thicket Settlement |  |  |
| Main Biological and Social Features | Acacia sieberiana, Albizia grandibracteata, Anacardium occidentale, Antiaris toxicaria, Balanites aegyptiaca, Borassus aethiopum, Citrus sp., Crateva adansonii, Elaeis guineensis, Ficus sp., Lannea schweinfurthii, Maerua angolensis, Mangifera indica, Melia azedarach, Moringa oleifera, Persea americana, Sclerocarya birrea, Tamarindus indica, Trichilia emetic, Artocarpus heterophyllus, Azadirachta indica, Kigelia africana, Pinus sp., Stereospermum kunthianum, Syzygium cumini, Artocarpus heterophyllus, Azadirachta indica, Combretum adenogonium, Lannea schweinfurthii, Milicia excelsa, Moringa oleifera, Philenoptera laxiflora, Stereospermum kunthianum, Terminalia superba <br> Termite mounds |  |  |
| Notable Biological and Social Features | Tamarindus indica: Uganda Red List (VU); IUCN (LC) <br> Milicia excelsa (mature tree) - Iroko; IUCN Globally LR/NT; Uganda Red List (EN), CHA Criterion 1e. NFA Reserved species. <br> Albizia grandibracteata: (Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) |  |  |
| Dominant woody species | No detailed survey completed |  |  |
| Dominant Herbaceous species | No detailed survey completed |  |  |
| Phytosociological description (within plot) | Modfied habitat - Agricultural |  |  |
| Alien/Invasive Species | None identified |  |  |


| Fïora - Froiecied Species | Species of conservailon concern were recordedi- <br> Tamarindus indica: Uganda Red List (VU); IUCN (LC) <br> Milicia excelsa (mature tree) - Iroko; IUCN Globally LR/NT; Uganda Red List (EN), CHA Criterion 1e. NFA <br> Reserved species <br> Albizia grandibracteata: (Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed); |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |  |
| Closet Air Receptor (distance) | Settlement, adjacent |  |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between 50-70 dB(A) Leq. Nighttime levels would be lower. |  |  |  |  |  |  |
| Closest Noise Receptor (distance) | Settlement, adjacent |  |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlem | nents | Healthc |  |  | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |  |  |
| 0-25m | Approx. 5 settlements to south west in village of Avogera. 13m -23m |  | None |  | None |  | None |
| 25-85m | Approx. 3 settlements to south west, 25 m and 1 settlement to south east, 80 m in village of Avogera |  | None |  | None |  | None |
| 85-375m | Approx. 230 settlements. M ajority to east and some to north west. $90 \mathrm{~m}-375 \mathrm{~m}$ in village of Avogera |  | None |  | Avogera Catholic Church 250m east. |  | Avogera Primary School 315m east |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |  |
| 0-80m | 0-130m |  | Approx 35 settlements in village of Avogera |  | None |  | None |
| 80-180m | 130-250m |  | Approx 100 settlements in village of Avogera |  |  | None | Avogera Catholic Church 250m east. |
| 180-350m | 250-450m |  | Approx. 190 settlements in village of Avogera |  |  | None | Avogera Open Heaven Church - 570m south |
| Soils and Geology | Soil Type | Lithology  <br> $0-15 \mathrm{~m}$ Brown sandy clay <br> $15-20 \mathrm{~m}$ Light brownish yellow clay <br> $20-35 \mathrm{~m}$ Brownish sand <br> $35-80 \mathrm{~m}$ Greenish sandy clay <br> $35-80$ Fine sand <br> $80-85 \mathrm{~m}$ White sand |  |  |  | gical data for DWD from the well pad. | 31403. Lithological Data I |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  |  | Distance to Well Pad (m) |  |
|  |  | 31403 | 243919N | 333911 |  | Within land acquisition |  |
|  | Borehole Data | Depth (m) | Static Water Level (m) | Water Level (m) |  | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |




|  | assessed) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |
| Closet Air Receptor (distance) | Settlements, adjacent |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |
| Closest Noise Receptor (distance) | Settlements, adjacent |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship |  | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |
| 0-25m | Approx. 5 settlements in village of Oriibo. $2 m-20 m$ | None | None |  | None |
| 25-85m | Approx. 8 settlements in village of Oriibo. 40 m 84m | None | None |  | None |
| 85-375m | Appox. 150 settlements in village of Oriibo. Majority to north. 100m-375m | None | Ntembiro Church - 200m south east <br> Church of Uganda - 200m east <br> Pentecostal Church of God - <br> 175 m north east <br> Charismatic Episcopal <br> Church - 175m north east <br> Church of God - 90m north <br> Uriibo Catholic Church - <br> 270 m north |  | Uribo Prim School - 85m north |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |
| 0-130m | Approx 14 settlements in village of Oriibo | None | Church of God - 90m north |  | Uribo Prim School-85m north |
| 130-250m | Approx 75 settlements in village of Oriibo | None | Ntembiro Church - 200 msotuh eastChurch of Uganda - 200 meastPentecostal Church of God -175m north eastCharismatic EpiscopalChurch-175m north east |  | None |
| 250-450m | Approx. 100 settlements in village of Oriibo. M ajority to north | None | Uriibo Catholic Church 270 m north |  | None |
| Soils and Geology | Soil Type | There are no boreholes in the area. |  |  |  |
| Hydrology | Closest Known Well | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | - | - | None within 1 km |  |
|  | Borehole <br> Data Depth <br> $(\mathrm{m})$ | Static Water Level (m) | Water Level (m) | Yield <br> $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |







|  | assessedi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |  |
| Closet Air Receptor (distance) | Settlement, adjacent |  |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |  |
| Closest Noise Receptor (distance) | Settlement, adjacent |  |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Health |  |  | Worship |  | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |  |  |
| 0-25m | Approx. 1 settlement 5 m to north in village of Kichoke Bugana | Non |  |  | None |  | None |
| 25-85m | Approx. 1 settlement 50 m to north in village of Kichoke Bugana | Non |  |  | None |  | None |
| 85-375m | Approx. 20 settlements to north east in village of Kijumbya. 110m 315 m | Non |  |  | None |  | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |  |
| 0-130m | Approx. 6 settlements in village of Kijumbya and Kichoke Bugana | None |  | None |  |  | None |
| 130-250m | Approx. 7 settlements in village of Kijumbya | None |  | None |  |  | None |
| 250-450m | Approx. 17 settlements in village of Kijumbya | None |  | Kijumbya Church Of Uganda - 387m north east |  |  | None |
| Soils and Geology | Soil Type | There are no borings at this site. Lithoogy of DWRM boring log for DWD 16040 is provided below. |  |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  |  | Distance to Well Pad (m) |  |
|  |  | 16040 | 234640 N |  | 33167E | 676 |  |
|  | Borehole Data | Depth (m) | Static Water <br> Level (m) |  | Water Level (m) | Yield m3/hr | Drawdown <br> (m) |
|  |  | 70 | - |  | - | - | - |


|  | Water Avainaioliny |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Water Quality | No water quality report available |  |  |
| Surface Water | Closest Surface Water | Not identified, 754m Wetland, 676m |  |  |
|  | Distance to Lake/River | Lake Albert, 10,167m |  |  |
| Socioeconomic Characteristics |  |  |  |  |
| Social | Distict | Subcounty | Parish | Village |
|  | Buliisa | Buliisa | Bugana | Kichoke Bugana |
|  | Nearby Receptor | Receptor Details |  | Distance to Well Pad (m) |
|  | Nearby Receptor | Kijumbya Church of Uganda |  |  |
|  | Kijumbya Church of Uganda, graveyards |  |  |  |
| Archaeology and Cultural Heritage | Date Surveyed <br> 2015 \& 4th July 2017 | Archaeological remains <br> Pottery sherds were observed at five locations. <br> Graveyards <br> A burial ground of the Abira clan has been in use since 1964. <br> Cultural heritage <br> There is a cultural site called Chwa in a tarmarind tree that had been burnt. <br> The site is used for rain making rituals. <br> A barkcloth tree (Mutooma) is a possible cultural site. |  |  |
| Landscape and Visual Amenity | Landscape <br> Character Area LCA01 | Buliisa Lowland Pastoral Farmland <br> Key local characteristics: <br> - This site is dominated by grazing land, and comprised of bushland thicket and void of infrastructure. <br> - Views are largely enclosed by thicket vegetation. |  |  |

[^0]| 18. KGG-05 | Well pad in LA2 |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | LA2- North |  |  |
| Field | Kigogole |  |  |
| Coordinates | - | - | + ${ }^{4}$ |
| Elevation (m) | 673 |  |  |
| Terrain | Flat to Sloping |  | Fut |
| Slope (degrees) and Aspect | 2.076308 | Northwest |  |
| Well Pad Area (ha) | 3.7 | 5.6 |  |
| District | Buliisa |  |  |
| CHA habitat type | Modified |  |  |
| Survey date(s) and Type | 23 January 2017 (Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | Survey buffer mainly within cultivated land. Small area of grazing land to the south. Pandiga. |  |  |
| Vegetation type(s) (WCS mapping) | Cultivation Grazing land |  |  |
| Vegetation types recorded (microhabitats) | Bushed grassland; gardens <br> Manihot gardens <br> Manihot-Zea garden; bushed grassland <br> Musa-Manihot garden; fallow |  |  |
| Main Biological and Social Features | Acacia sieberiana, Albizia coriaria, Albizia grandibracteata, Antiaris sp., Antiaris toxicaria, Artocarpus heterophyllus, Citrus sinensis, Crateva adansonii, Elaeis guinensis, Erythrina abyssinica, Ficus ?ovata, Ficus sp., Ficus sp. (long petiole), Kigelia africana, Lannea schweinfurthii, Mangifera indica, Securidaca longipedunculata, Stereospermum kunthianum, Tamarindus indica <br> Termite mound |  |  |
| Notable Biological and Social Features | Tamarindu <br> Albizia gran | indica: Ugan | Red List (VU); IUCN (LC) <br> Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) |
| Dominant woody species | No detailed survey completed |  |  |
| Dominant Herbaceous species | No detailed survey completed |  |  |
| Phytosociological description (within plot) | Modfied habitat - Agricultural |  |  |
| Alien/Invasive Species | None identified |  |  |
| Flora- Protected Species | Species of conservation concern were recordedTamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |



|  |  | DWD25893 : Static Water level 29.8 b.m.b.g.l. and Constanct Discharge Yield $1.9 \mathrm{~m}^{3} / \mathrm{hr}$ DWD16039: Static Water level 51.7 b.m.b.g.l. and Yield $0.8 \mathrm{~m}^{3} / \mathrm{hr}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Water <br> Quality | No water quality report available |  |  |  |
| Surface Water | Closest <br> Surface Water | Sambiye, 192m Wetland 145m |  |  |  |
|  | Distance to Lake/River | Victoria Nile, 9,832m |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |
| Social | Distict | Subcounty | Parish |  | Village |
|  | Buliisa | Buliisa | Nyamitete |  | Gotlyech |
|  | Nearby <br> Receptor | Receptor Details Di |  | Distance to Well Pad (m) |  |
|  |  | Ngwedo Farm Church |  | 413 |  |
|  | Graveyards, Pandiga village and Gotlyech village |  |  |  |  |
| Archaeology and Cultural Heritage | Date <br> Surveyed <br> 2013 \& 6th <br> July 2017 | Archaeological remains <br> A lithic platform core and a quartz flake were recorded. Concentrations of pottery sherds and pottery findspots were identified across the wellpad area. Roulette-decorated pottery dates to the Late Iron Age or later, while dense pottery scatters may reflect ritual activities. <br> Burial places <br> Surveys identified five burial places, comprising six burials under a Mutooma tree and a mango tree, a graveyard marked by five large mango trees and three small burial grounds. <br> Places of worship <br> One place of worship is noted in the study area, Ngwedo Farm church. <br> Cultural sites <br> Gotlyech means 'a place where elephants lived'. It is said elephants used to live in the area. The Sambiye seasonal stream is considered sacred, and has 'male' and 'female' streams. <br> Medicinal plants <br> Medicinal plants not seen at other wellpad sites comprise Olwedo tree and Urweti plant. |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA02 | Buliisa Lowland Rolling Farmland <br> Key local characteristics: <br> - This site comprises of a series of agricultural crop gardens with a noticeable cluster of trees in the northern quadrant. <br> - Landform is undulating and although there are no formal filed boundaries fields are accessed by local residents who manage the crops. <br> - This site and surrounding context are characterized by self-sufficient farming and is relatively tranquil given its distance to any formal tracks or roads. <br> - Views are largely enclosed by vegetation with occasional glimpses south- east towards Nyamiete <br> - At the site one gets a clear view of Ngwedo town and NSO-02. |  |  |  |




|  | Nearby Receptors | $\overline{\text { neceptor }}$ Detañs |  |
| :---: | :---: | :---: | :---: |
|  |  | None within 1 km . | NA |
|  | Kraal <br> Seasonally flooded area used by grazing animals |  |  |
| Archaeology and Cultural Heritage | Date Surveyed 3rd July 2017 | A cultural site called Chwa, used for rain making, is located at the site of a burned tamarind tree. Further possible cultural sites noted in the survey, but not verified by traditional religious practitioners, comprise a fire place in a Munongo tree, cooking stones in Nnongo and Musingabakazi trees, a possible sacrificial place in a tamarind tree, an Amarula tree, and a large tamarind tree. <br> Medicinal and cultural uses of plants <br> Medicinal plants noted include Musingabakazi, Mudidiyo, Mukodoyi, Mukabyakabya, Musonge, Mutuula/Amarula, Mukondwe, Kulumbero, Lenga, cactus and tamarind. |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA01 | - This site consists of a broad open pastoral landscape. This open pasture features grazing cattle, short grasses and irregular pattern of semi mature to mature trees with elements of thicket. <br> - Landform gently slopes west, and water drains into a natural semi-permanent attenuation pond. <br> - Views are largely short distance and fragmented by sporadic vegetation and rolling topography. |  |



| Cioset AiI <br> Receptor <br> (distance) | Selliement, oûm |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlement, 80m |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements |  | Healthcare | Worship |  | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |  |
| 0-25m | None |  | None | None |  | None |
| 25-85m | Approx 1 settlement 80m to north in village of Kijumbya Approx 1 settlement 80m to south in village of Kichoke Bugana |  | None | None |  | None |
| 85-375m | Approx 17 <br> settlements in villages of Kijumbya and Kichoke Bugana 85 m to 375 m . M ajority to south and north west. |  | None | None |  | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |
| 0-130m | Approx 4 settlement in village of Kijumbya Approx 4 settlement in village of Kichoke Bugana |  | None | None |  | None |
| 130-250m | Approx 6 settlement in village of Kijumbya Approx 5 settlement in village of Kichoke Bugan |  | None | None |  | None |
| 250-450m | Approx 20 settlement in village of Kijumbya, Kichoke Bugana, and Kikoora |  | None | None |  | None |
| Soils and Geology | Soil Type | There are no boreholes in the area. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | None | - | - | None within 1 km |  |
|  | Borehole Data | Depth <br> (m) | Static Water Level (m) | Water Level (m) | Yield m3/hr | Drawdown (m) |
|  |  | - | - | - | - | - |
|  | Water Availability | There ae no known boreholes in the area; depth to water and potential yield are unknow |  |  |  |  |
|  | Water Quality | No water quality report available |  |  |  |  |




| Species | Tamarindus indica |
| :--- | :--- |
| Fauna - Priority <br> Species | No detailed survey for fauna was undertaken at this site. |

Physical Characteristics

| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Closet Air <br> Receptor <br> (distance) | Settlement, 315m |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between 50-70 dB(A) Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlement, 315m |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |

Wellpad (operational phase, DAYTIME)

| $0-25 \mathrm{~m}$ | None | None | None | None |
| :---: | :---: | :---: | :---: | :---: |
| $25-85 \mathrm{~m}$ | None | None | None | None |
| $85-375 \mathrm{~m}$ | Approx 1 settlement 315 m <br> north east in village of <br> Kizongi | None | None | None |

Wellpad (operational phase, NIGHT)




| description (witilin <br> plot) Qpuntia_ bushland <br> Lannea_-Balanites-Azima-Hyperthelia-Chloris wooded grassland with scattered Thicket; <br> Senna siamea woodlots |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive Species | Senna siamea, Opuntia vulgaris |  |  |  |
| Flora- Protected Species | No threatened, rare or range-restricted species was recorded at the site and no other species of conservation concern were recorded. |  |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |
| Physical Characteristics |  |  |  |  |
| Ambient Air Quality | Consistent with an undisturbed area. |  |  |  |
| Closet Air Receptor (distance) | Approx. 1 settlement 60 m to west in village of Kakindo |  |  |  |
| Ambient Noise | This is an undisturbed area where ambient noise levels are influenced by human activities. |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Approx. 1 settlement 60m to west in village of Kakindo |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |
| 0-25m | None | None | None | None |
| 25-85m | Approx. 1 settlement 60m to west in village of Kakindo | None | None | None |
| 85-375m | Approx. 25 settlements around the west, north and east in the village of Kakindo. 120m 350 m | None | None | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |
| 0-130m | Approx 2 settlements to west in village of Kakindo | None | None | None |
| 130-250m | Approx 10 settlementsin village of Kakindo | None | None | None |
| 250-450m | Approx 30 settlementsin village of Kakindo | None | None | None |
| Soils and Geology | There are no soil borings at this site. |  |  |  |
| Hydrology | Closest | DWRM | nates | Distance to Well Pad (m) |


|  | nnown ẅeli | ī |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 21665 | 325693 | 233467 | 749m |  |
|  | Borehole Data | Depth <br> (m) | Static <br> Water <br> Level <br> (m.b.g.I.) | Water <br> Level (m.b.g.l.) | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | 120 | NA | NA | NA | NA |
|  | Water availability | There closest known boreholes are: <br> DWD21665-863m to center point <br> DWD16552-1019m to center point |  |  |  |  |
|  | Water Quality | No water quality report available |  |  |  |  |
| Surface Water | Closest <br> Surface Water | Sambiye, 302 m <br> Wetland, 221m |  |  |  |  |
|  | Distance to Lake/River | Lake Albert, 2,766m |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict | Subcounty |  | Parish |  | Village |
|  | Bulisa | Bulisa TC |  | Northern Ward |  | Kakindo |
|  | Nearby | Receptor Detail |  | Distance to Well Pad (m) |  |  |
|  | Receptors | Settlements |  | 60 |  |  |
| Archaeology and Cultural Heritage | No survey completed | N/A |  |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA01 | Buliisa Lowland Pastoral Farmland <br> Key local characteristics: <br> - This site characterized by broad open pastoral landscape with no field boundaries and roaming cattle. <br> - Landform is generally flat and comprised of grassland with sporadic thicket. <br> - The site is accessed by a network of informal tracks. <br> - Views range from short to medium distance and are frequently fragmented by sporadic vegetation |  |  |  |  |



| Distance from Site <br> boundary (not centre of <br> site) | Settlements | Healthcare | Worship | Education |
| :--- | :--- | :--- | :--- | :--- |

Wellpad (operational phase, DAYTIME)

| $0-25 \mathrm{~m}$ | Approx. 3 settlements <br> 15 m to the east in village <br> of Kisiomo | Kisimo Health Center; <br> within well pad <br> maximum extent | None | None |
| :---: | :---: | :---: | :---: | :---: |
| $25-85 \mathrm{~m}$ | Approx. 2 settlements <br> 35 m to north and 1 to <br> south in the village of <br> Kisiomo | None | None | None |
| $85-375 \mathrm{~m}$ | Approx. 88 settlements <br> to north east and south. <br> $85 m-375 m$ | None | Kakindo Miracle church <br> 300 m south east <br> Kisansya East St Paul <br> Church of Uganda -370 m <br> north | None |

Wellpad (operational phase, NIGHT)


|  |  | sa | -oximermüa | nakindo |
| :---: | :---: | :---: | :---: | :---: |
|  | Closest Receptors | Receptor Details ${ }^{\text {dis }}$ |  | Distance to Well Pad (m) |
|  |  | Settlements | Adjac |  |
| Archaeology and Cultural Heritage | No survey undertaken. | No survey undertaken. |  |  |
| Landscape and Visual Amenity | Landscape Character <br> Area <br> LCA01 | Buliisa Lowland Pastoral Farmland <br> Key local characteristics: <br> - This sits within a transitional landscape between the lowland pastoral farmlands and the Nile River Corridor to the north. <br> - The majority of the landcover is characterized by arable grazing and sporadic trees and thicket. <br> - The site is void of notable infrastructure and formal tracks and thicket vegetation occupies much of the northern portion. <br> - Views vary and are more open across low level grassland and interrupted by sporadic vegetation. <br> - There is a relative sense of wildness given its proximity to the Nile and Ramsar boundary. |  |  |


| 24. NGR-01 | Well pad in CA1 |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | CA1 |  |  |
| Field | Ngiri |  | 4 |
| Coordinates | - | - |  |
| Elevation (m) | 628 |  | \% Woter |
| Terrain | flat |  |  |
| Slope (degrees) and Aspect | 2.102079 | Northeast |  |
| Well Pad Area (ha) | 3.6 | 5.5 |  |
| District | Buliisa |  | (tarcotex.cruw |
| CHA habitat type | Modified |  |  |
| Survey date(s) and Type | 11 December 2016 / 19 January 2017 (Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | The site is mainly cultivated land with some areas of grazing and cattle corridors. The site is very close to the other boundary of the Ramsar site. |  |  |
| Vegetation type(s) (WCS mapping) | Cultivation Some grazing land |  |  |
| Vegetation types recorded (microhabitats) | Gossypium garden; bushed grassland <br> Gossypium garden; Zea garden <br> Open bushland with small patch of Moringa oleifera woodlot and Gossypium garden Seasonally flooded bushed grassland; Gossypium garden <br> Young Eucalyptus -pine woodlot |  |  |
| Main Biological and Social Features | Acacia senegal, Acacia sieberiana, Balanites aegyptiaca, Crateva adansonii, Kigelia africana, Lannea schweinfurthii, Moringa oleifera, Seasonally flooded grassland, Tamarindus indica, Ziziphus pubescens <br> Termite mounds |  |  |
| Notable Biological and Social Features | Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |
| Dominant woody species | No detailed survey completed |  |  |
| Dominant Herbaceous species | No detailed survey completed |  |  |
| Phytosociological description (within plot) | Modfied habitat - Agricultural |  |  |
| Alien/Invasive Species | None identified |  |  |
| Flora- Protected Species | Species of conservation concern were recordedTamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |
| Physical Characteristics |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |
| Closet Air Receptor (distance) | Settlement, adjacent |  |  |





| Species |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flora- Protected Species | Species of conservation concern were recordedTamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |  |  |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |  |
| Closet Air Receptor (distance) | Settlements, adjacent |  |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlements, adjacent |  |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements |  |  | Healthcare |  | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |  |  |
| 0-25m | None |  |  | None |  | None | None |
| 25-85m | Approx. 1 settlement 50m to south east in village of Kasinyi |  |  | None |  | None | None |
| 85-375m | Approx 6 settlements 95 m 130 m to south east |  |  | None |  | None | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |  |
| 0-130m | Approx 6 settlements in village of Kasinyi |  |  | None |  | None | None |
| 130-250m | Approx 1 settlement to south east in village of Kasinyi |  |  | None |  | None | None |
| 250-450m | Approx. 2 settlements to south in village of |  |  | None |  | None | None |
| Soils and Geology | Soil Type | There are no borings at this site. No borehole logs available for DWD 29474. |  |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  |  | Distance to Well Pad (m) |  |
|  |  | 29474 |  |  |  | 270 |  |
|  | Borehole Data | $\begin{aligned} & \text { Depth } \\ & \text { (m) } \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \text { Wate } \\ & \text { (m) } \end{aligned}$ | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | - |  |  |  | - | - |
|  | Water <br> Availability | There are no known borehole data available |  |  |  |  |  |
|  | Water Quality | No water quality report available |  |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 2,392m <br> Wetland, 1,567m |  |  |  |  |  |
|  | Distance to Lake/Rive | Victoria Nile, 2,378m |  |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |  |




| Species | eristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Settlements, adjacent |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlements, adjacent |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements |  | Healthcare |  | Worship | Education |
| Wellpad (operational phase, DAYTIME) |  |  |  |  |  |  |
| 0-25m | Approx. 15 settlements to the north and east in the village of Kirama. 0 m$-25 \mathrm{~m}$ |  | None |  | None | None |
| 25-85m | Approx. 30 settlements surround the site. $25 \mathrm{~m}-80 \mathrm{~m}$ in the village of Kirama |  | None |  | None | None |
| 85-375m | Approx. 170 settlements to north east in village of Kichoke Approx. 160 settlements to east and west in village of Kirama Approx. 60 settlements to south in village of Kiyere |  | None $\quad$ Kic |  | Church of Uganda 330 m north west | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |
| 0-130m | Approx. 90 settlements in villages of Kiyer, Kirama and Kichoke |  | None |  | None | None |
| 130-250m | Approx. 130 settlements in villages of Kiyer, Kirama and Kichoke |  | None |  | None | None |
| 250-450m | Approx. 300 settlements in villages of Kiyer, Kirama and Kichoke |  | None $\quad$ Ki |  | Kichoke Church of Uganda 330 m north west | None |
| Soils and Geology | Soil Type | There are no boreholes at this site. Lithology for borehole DWRM 16551 provide below. <br> Lithology <br> 0-4 m Brown Sandy Clay <br> 4-7m Yellowish brown clay <br> 7-18m Brown sticky clay with gravels <br> 18-27m Brown sandy clay with gravels <br> 27-32m Brown sand with gravels <br> 32-36 m Yellowish brown clay with gravels <br> 36-45 m Darkish brown clay <br> 45-55m Greyish brown clay <br> 55-64m Brown fine grain sand <br> 64-100m Greyish green clay |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | 16551 | 323079 E | 240209N |  |  |
|  | Borehole Data | Depth (m) | Static Water Level (m.b.g.I.) | Water Level (m.b.g.l.) | Yield $\mathrm{m}^{3} / \mathrm{hr}$ Dr | (m) |
|  |  | 54 | NA | NA | 0.5 | NA |
|  | Water | There are no boreholes at the well pad site. Based on available bore logs (5) in the vicinity of NGR-03-06 |  |  |  |  |







| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Closet Air <br> Receptor <br> (distance) | Settleemnts, 300m |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise Receptor (distance) | Settlements, 300 m |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |

Wellpad (operational phase, DAYTIME)

| $0-25 \mathrm{~m}$ | None | None | None | None |
| :---: | :---: | :---: | :---: | :---: |
| $25-85 \mathrm{~m}$ | None | None | None | None |
| $85-375 \mathrm{~m}$ | Approx 3 settlements 300 m <br> to west in village of Kigwera <br> SE | None | None | None |

Wellpad (operational phase, NIGHT)




| Closest Noise Receptor (distance) | Settlements, 340m |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |
| 0-25m | None | None | None | None |
| 25-85m | None | None | None | None |
| 85-375m | Approx. 1 settlement 340 m to south in village of Ngwedo | None | None | None |

Wellpad (operational phase, NIGHT)

| 0-130m | None |  |  | None |  |  | None |  | None |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130-250m | None |  |  | None |  |  | None |  | None |
| 250-450m | Approx. 6 settlement in village of Ngwedo |  |  | None |  |  | None |  | None |
| Soils and Geology | Soil Type | There are no borings within 1 km of the site. |  |  |  |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  |  |  | Distance to Well Pad (m) |  |  |
|  |  | None | - |  |  | - | None within 1 km |  |  |
|  | Borehole <br> Data | Depth <br> (m) | Static Water Level (m) |  | Water Level(m) |  | Yield m ${ }^{\mathbf{3}} \mathrm{hr}$ | Drawdown (m) |  |
|  |  | - |  |  |  | - | - |  | - |
|  | Water availability | There are no boreholes at the well pad site. The closest well is DWD33448, approximately 2 km from the site. Depth to water is reported at 91 m. b.g.I. and an average yield of $20.4 \mathrm{~m}^{3} / \mathrm{hr}^{2}{ }^{2}$ |  |  |  |  |  |  |  |
|  | Water Quality | No water quality report available |  |  |  |  |  |  |  |
| Surface Water | Closest Surface Water | Not identified, 1,382m Wetland, 1371m |  |  |  |  |  |  |  |
|  | Distance to Lake/River | Victoria Nile, 6,943m |  |  |  |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |  |  |  |
| Social | Distict | Subcounty |  | Parish |  |  | Village |  |  |
|  | Buliisa | Ngwedo |  | Ngwedo |  |  | Ngwedo LC1 |  |  |
|  | Closest <br> Receptor | Receptor Details |  |  |  | Distance to Well Pad (m) |  |  |  |
|  |  | Ngwedo Church |  |  |  | 1,080 |  |  |  |
|  |  | Ngwedo School |  |  |  | 1,110 |  |  |  |
|  | None recorded |  |  |  |  |  |  |  |  |
| Archaeology and Cultural Heritage | Date Surveyed 8th December 2016 | NSO-01 was heavily vegetated and it was difficult to gain access and view material on the ground surface. Find comprise a single undiagnostic, abraded pottery sherd. |  |  |  |  |  |  |  |
| Landscape and | Landscape | Buliisa Lowland Rolling Farmland |  |  |  |  |  |  |  |

[^1]


| Fauna- FrioritySpecies |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Physical Characteristics |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |
| Closet Air Receptor (distance) | Ngwedo Farm Church, 638m |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise Receptor (distance) | Ngwedo Farm Church, 638m |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |
| 0-25m | None | None | None | None |
| 25-85m | Approx. 3 settlements $45 \mathrm{~m}-60 \mathrm{~m}$ to south in village of Ngwedo farm | None | None | None |
| 85-375m | Approx. 60 settlements surrounding the site in the village of Ngwedo farm. 100m-375m | None | None | None |

Wellpad (operational phase, NIGHT)

| 0-130m | Approx. 6 settlements in village of Ngwedo farm. |  | None |  | None | None |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130-250m | Approx 30 settlements in village of Ngwedo farm |  | None |  | None | None |
| 250-450m | Approx 30 settlements in village of Ngwedo farm |  | None |  | None | None |
| Soils and Geology | Soil Type | There are no borings at this site. Lithology for boring DWD25893 is provided below. <br> Lithology <br> 0-16m Silty Clay <br> 16-17m Clays <br> 17-33m Silty Sands <br> 33-87m Sandy clays |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD25893 | 02N | 334658E | 626 |  |
|  | Borehole Data | Depth (m) S | Water <br> I.) | Water Level (m.b.g.I) | Yield m ${ }^{\mathbf{3}} \mathrm{hr}$ | Drawdown (m) |
|  |  | 76 | 77 | - | - | - |
|  | Water availability | There are no boreholes at the well pad site. |  |  |  |  |
|  | Water <br> Quality | No water quality report available |  |  |  |  |
| Surface Water | Closest Surface | Sambiye, 198m Wetland, 687m |  |  |  |  |



| 31. NSO-03 | Well pad in LA2 |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | LA2- North |  |  |
| Field | Nsoga |  |  |
| Coordinates | - |  |  |
| Elevation(m) | 664 |  | Trex |
| Terrain | sloping |  | *2-xay |
| Slope (degrees) and Aspect | 2.823035 | South |  |
| Well Pad Area (ha) | 3.8 | 7.7 | 120 \% t |
| District | Bulissa |  |  |
| CHA habitat type | Transitional (natural) |  |  |
| Survey date(s) and Type | 16 January 2017 (Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | The site is located in a large expanse of grazing land with no cultivation or housing nearby. |  |  |
| Vegetation type(s) (WCS mapping) | Grazing land |  |  |
| Vegetation types recorded (microhabitats) | Bushed grassland with thicket <br> Grassland with thicket <br> Bushed grassland <br> Bushed grassland with thicket and scattered trees |  |  |
| Main Biological and Social Features | Acacia senegal, Acacia sieberiana, Acacia sieberiana, Albizia coriaria, Albizia grandibracteata, Antiaris sp., Balanites aegyptiaca, Commiphora sp., Crateva adansonii, Dalbergia melanoxylon, Euphorbia candelabrum, Lannea schweinfurthii, Maerua angolensis, Sclerocarya birrea, Seasonal wetland, Securidaca longipedunculata, Stereospermum kuntianum, Tamarindus indica, Terminalia glauscens, Ziziphus pubescens <br> Termite mounds <br> Some aardvark activity |  |  |
| Notable <br> Biological and <br> Social Features | Tamarindu <br> Dalbergia <br> Albizia gra | dica: U lanoxylo bracteata | da Red List (VU); IUCN (LC) <br> NFA Reserved Species; Uganda Red List (VU) <br> Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) |
| Dominant woody species | No detailed survey completed |  |  |
| Dominant <br> Herbaceous species | No detailed survey completed |  |  |
| Phytosociological description (within plot) | Modfied habitat - Grazing land |  |  |
| Alien/Invasive Species | None identified |  |  |
| Flora- Protected Species | Species of conservation concern were recorded Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |





| (witnin pioi) |  Crateva-Digitaria-Hyperthelia Bushed Grassland with Thicket Digitaria-Bulbostylis-Acacia Grassland with Thicket Digitaria-Hyperthelia-Acacia Bushed Grassland with Thicket Ziziphus-Hyperthelia-Bulbostylis Bushed Grassland Ziziphus-Lannea-Ficus-Albizia Seasonally Flooded Woodland |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive Species | Yes - Invasive- Cassia siamea was recorded. Exotic - Thevetia peruviana is an exotic |  |  |  |  |  |  |  |  |
| Flora- Protected Species | Species of conservation concern were recorded - <br> Dalbergia melanoxylon: RS; LR/NT (IUCN 2018); Nationally VU (WCS 2016) <br> Albizia grandibracteata: (Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) |  |  |  |  |  |  |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Kibambura LC office, 368m |  |  |  |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Kibambura LC office, 368m |  |  |  |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements |  |  | Healthcare |  |  | Worship |  | Education |
| Wellpad (operational phase, DAYTIM E) |  |  |  |  |  |  |  |  |  |
| 0-25m | Approx. 1 settlement 18m to east in village of Kibambura |  |  | None |  |  | None |  | None |
| 25-85m | Approx. 2 settlements in village of Kibambura. 75 m north west and 70m east. |  |  | None |  |  | None |  | None |
| 85-375m | Approx. 30 settlements to the north and west in the village of Kibambura. 95m 370 m |  |  | None |  |  | None |  | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |  |  |  |
| 0-130m | Approx 5 settlements in village of Kibambura |  |  | None |  |  | None |  | None |
| 130-250m | Approx 1 settlements in village of Kibambura |  |  | None |  |  | None |  | None |
| 250-450m | Approx 30 settlements in village of Kibambura |  |  | None |  |  | Kibamura Church of Uganda - 450m north |  | None |
| Soils and Geology | Soil Type | There are no known soils boring in the area. |  |  |  |  |  |  |  |
| Hydrology | Closest <br> Known Well | DWRM <br> ID | Coordinates |  |  |  | Distance to Well Pad (m) |  |  |
|  |  | None |  |  |  | - | None within 1 km |  |  |
|  | Borehole | Depth | Static Water |  | Wate | er Level | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m) |  |



| 33. NSO-05 | Well pad in LA2 |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | LA2- North |  | $\mathrm{r}=\mathrm{a}$ |
| Field | Nsoga |  |  |
| Coordinates | - |  |  |
| Elevation(m) | 679 |  | 4 |
| Terrain | Flat |  |  |
| Slope (degrees) and Aspect | 0.734367 | North |  |
| Well Pad Area <br> (ha) | 3.4 | 5.5 |  |
| District | Buliisa |  |  |
| CHA habitat type | Transitional (natural) / <br> Modified |  |  |
| Survey date(s) and Type | 20 January 2017 (Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | Survey buffer partly grazing land (western section) and partly cultivation (eastern section). Settlement area to the east. Grass not overgrazed however. |  |  |
| Vegetation type(s) (WCS mapping) | Grazing land Cultivation |  |  |
| Vegetation <br> types <br> recorded <br> (micro- <br> habitats) | Bushed grassland with scattered thicket Combretum- Hyperthelia woodland patch Manihot graden-fallow-bushed grassland mosaic |  |  |
| Main <br> Biological and <br> Social <br> Features | Acacia sieberiana, Albizia coriaria, Anacardium occidentale, Artocarpus heterophyllus, Citrus sinensis, Combretum molle, Commiphora africana, Crateva adansonii, Euphorbia candelabrum, Ficus sp., Kigelia africana, Lannea schweinfurthii, Maerua angolensis, Mangifera indica, Mangifera indica, Sapindaceae sp., Sclerocarya birrea, Stereospermum kunthianum <br> Termite mound |  |  |
| Social features | None recorded |  |  |
| Notable <br> Biological and <br> Social <br> Features | None |  |  |
| Flora- <br> Protected <br> Species | No species of conservation concern were recorded |  |  |
| Fauna - <br> Priority <br> Species | No detailed survey for fauna was undertaken at this site. |  |  |
| Physical Characteristics |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |


| Cioset Ait <br> Receptor (distance) | ivgwecio Sciooi, 0 ¢97m |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |
| Closest Noise Receptor (distance) | Ngwedo School, 697m |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |

Wellpad (operational phase, DAYTIME)

| $0-130 \mathrm{~m}$ | Approx5 settlements in village of <br> Kibambura | None | None | None |
| :---: | :---: | :---: | :---: | :---: |
| $130-250 \mathrm{~m}$ | Approx 1 settlements in village of <br> Kibambura | None | None | None |
| $250-450 \mathrm{~m}$ | Approx 30 settlements in village of <br> Kibambura | None | Kibamura Church of <br> Uganda -450 m north | None |

## Wellpad (operational phase, NIGHT)

| 0-130m | Approx. 2 settlements in village of Kibambura |  |  | None | None | None |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130-250m | Approx. 3 settlements in village of Kibambura |  |  | None | None | None |
| 250-450m | Approx. 8 settlements in village of Kibambura |  |  | None | None | None |
| Soils and Geology | Soil Type | There are no borings at this site. Lithology for DWD30264 is provided below. <br> Lithology <br> 0-11 m Clay <br> 11-23m Sand <br> 23-26m Clay <br> 26-47m Sandy Clay <br> 47-83m Clay |  |  |  |  |
| Hydrology | Closest <br> Known <br> Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | DWD30264 <br> VPL-3054 <br> CD2245 |  | 235998 236827 233602 |  | $\begin{aligned} & 970 \\ & 965 \\ & 972 \end{aligned}$ |
|  | Borehole Data | Depth (m) |  | Water Level (m) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | - |  | - | $\begin{gathered} 7 \\ \text { (DWD30264) } \end{gathered}$ | - |
|  | Water availability | There is no information available. |  |  |  |  |
|  | Water Quality | No water quality reports available |  |  |  |  |
| Surface Water | Closest <br> Surface Water | Not identified, 322m Wetland, 340m. |  |  |  |  |
|  | Distance <br> to <br> Lake/River | Victoria Nile, 9148m. |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |



| 34. NSO-06 | Well pad in LA2 |  | $5$ |
| :---: | :---: | :---: | :---: |
| Location Block | CA1 |  |  |
| Field | Nsoga |  | 3-4\% |
| Coordinates | - | - |  |
| Elevation (m) | 702 |  | 4x |
| Terrain | Flat to sloping |  |  |
| Slope (degrees) and Aspect | 2.625656 | Southwest |  |
| Well Pad Area (ha) | 3.8 | 5.8 |  |
| District | Buliisa |  |  |
| CHA habitat type | Modified |  |  |
| Survey date(s) and Type | 22 January 2017 ( Avoidance) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | Survey buffer entirely within cultivated land. Ngewedo Farm. |  |  |
| Vegetation type(s) (WCS mapping) | Cultivation <br> Settlements |  |  |
| Vegetation types recorded (microhabitats) | Bushed grassland-fallow-Manihot garden mosaic <br> Fallow-Open grassland with scattered trees-gardens mosaic Gossypium-Zea gardens-bushed grassland-fallow mosaic Manihot garden <br> Manihot garden; bushed fallow |  |  |
| Main Biological and Social Features | Anacardium occidentale, Antiaris sp., Antiaris toxicaria, Artocarpus heterophyllus, Azadirachta indica, Citrus sinensis, Combretum molle, Crateva adansonii, Ficus natalensis, Ficus natalensis, Lannea schweinfurthii, Maerua angolensis, Mangifera indica, Sclerocarya birrea, Stereospermum kunthianum, Tamarindus indica <br> Termite mounds |  |  |
| Notable <br> Biological and <br> Social Features | Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |
| Dominant woody species | No detailed survey completed |  |  |
| Dominant Herbaceous species | No detailed survey completed |  |  |
| Phytosociological description (within plot) | Modfied habitat - Agricultural |  |  |
| Alien/Invasive Species | None identified |  |  |
| Flora- Protected Species | Species of conservation concern were recorded- <br> Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |
| Fauna - Priority | No detailed survey for fauna was undertaken at this site. |  |  |


| Species |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Characteristics |  |  |  |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Settlement, adjacent |  |  |  |  |  |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between $50-70 \mathrm{~dB}(\mathrm{~A})$ Leq. Nighttime levels would be lower. |  |  |  |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Settlement, adjacent |  |  |  |  |  |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements |  |  | Healthcare |  |  | Worship |  | Education |
| Wellpad (operational phase, DAYTIME) |  |  |  |  |  |  |  |  |  |
| 0-25m | None |  |  | None |  | None |  |  | None |
| 25-85m | Approx. 4 setttlements to north and west in village of Uduk I. 50m - 75m <br> Approx. 1 settlement 50 m to east in village of Ngwedo farm |  |  | None |  | None |  |  | None |
| 85-375m | Approx. 5 settIments 215 m 320 m to south east in village of Ngwedo farm Approx. 240 settlements 100 m 375 m to north, west and south west in village of Uduk I |  |  | None |  | Uduk I Burranam Tabanacle Church - 300m north west Uduk I Pentecostal Church of Uganda - 280m west Uduk I End of Time M essage Church (Parnam) 300 m north west |  |  | None |
| Wellpad (operational phase, NIGHT) |  |  |  |  |  |  |  |  |  |
| 0-130m | Approx 30 settlements in village of Uduk I and Ngwedo farm |  |  | None |  | None |  |  | None |
| 130-250m | Approx 50 settlements in village of Uduk I and Ngwedo farm |  |  | None |  | None |  |  | None |
| 250-450m | Approx 200 settlements in village of Uduk I and Ngwedo farm |  |  | None |  | Uduk I Burranam Tabanacle Church - 300m north west Uduk I Pentecostal Church of Uganda - 280m west Uduk I End of Time M essage Church (Parnam) 300 m north west |  |  | None |
| Soils and Geology | Soil Type | There are no known boriings within 1 km of the well pad. |  |  |  |  |  |  |  |
| Hydrology | Closest Known Well | DWRM <br> ID | Coordinates |  |  |  | Distance to Well Pad (m) |  |  |
|  |  | None |  |  |  |  | None within 1 km |  |  |
|  | Borehole Data | Depth (m) |  |  | Wate <br> (m) |  | Yield $\mathrm{m}^{3} / \mathrm{hr}$ | Draw |  |
|  |  |  |  |  |  |  | - |  | - |
|  | Water availability | There are no known boriings within 1 km of the well pad. |  |  |  |  |  |  |  |


|  | Wöater <br> Quality | INo water qualiny reporis availiadie |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Surface Water | Closest <br> Surface <br> Water | Not identified, 546m Wetland , 2,284m |  |  |
|  | Distance <br> to <br> Lake/River | Victoria Nile, 6919m |  |  |
| Socioeconomic Characteristics |  |  |  |  |
| Social | Distict | Subcounty | Parish | Village |
|  | Buliisa | Ngwedo | Mvule | Uduk I LC1 |
|  | Closest | Receptor Details | Distance to Well Pad (m) |  |
|  | Receptor | Uduk I LC Office | 253 |  |
|  |  | Uduk I Burranam Tabanacle | 328 |  |
|  | Ngwedo Farm and Uduk I villages <br> Graves and cultural sites <br> Places of worship within the NSO-06 study area comprise the Burranam Tabernacle Church, the Pentecostal Church of Uganda and the End of Time Message Church (Parnam). Southwest of the study area are Shongambe Church of Uganda and Shongambe Church of Uganda. To the south of the study area is Ngwedo Farm St. Charles Lwanga Catholic Church. |  |  |  |
| Archeology and Cultural Heritage | $\begin{gathered} \text { Survey } \\ \text { Date } \\ 2013,2015 \\ \text { \& 3rd July } \\ 2017 \end{gathered}$ | Archaeological remains <br> Two Late Stone Age cores and sherds dated to the Middle Iron sherds. Ironworking tuyères former homesteads were also <br> Burial places <br> Thirteen burial places were n graves marked by a Mutooma Uduk trees, the burial ground of least 11 graves, two graves, graves, a graveyard of about graveyard of more than 20 gra <br> Places of worship <br> Places of worship within the N Pentecostal Church of Uganda the study area are Shongamb south of the study area is Ngwe <br> Cultural sites <br> There is a clan shrine marked family shrines (kibira) and a fu homestead. A shrine (abila) and area. | ere (Ch ord <br> ing urial c , es, <br> udy <br> E <br> St. <br> sets <br> sibl <br> onal | so common. A few decora Iron Age roulette-decora ads and the foundations <br> a cemetery with about an with 17 graves marked vase Mukambo's clan, with es, a burial ground with Site, seven graves and <br> nam Tabernacle Church, urch (Parnam). Southwest Church of Uganda. To Church. <br> Uduk trees. There are th and Uduk trees in front to the northeast of the stud |
| Landscape and Visual Amenity | LCA02 | Buliisa Lowland Rolling Farmland <br> Key local characteristics: <br> - This site is largely characterized by arable crop fields arranged in an irregular layout. <br> - The dominant crop is cassava and activity is at the human scale with no notable infrastructure. <br> - Due to intervening topography and vegetation views vary from short range to longer glimpses. |  |  |



|  | crassipes andus propagate veget | vinia IIIU ively. | a. Dolliale a | iic species | inay prolifera | in uisturvance as |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flora- Protected Species | Species of conservation concern were recorded Tamarindus indica: Uganda Red List (VU); IUCN (LC) |  |  |  |  |  |
| Fauna - Priority Species | Area is mostly frequented by Olive Baboon, Black and White Colobus, Warthogs, Hippos, and Elephants other species may range into this area but not in large numbers. Fifteen amphibian and eleven reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; $33-49 \mathrm{~dB}(\mathrm{~A})$ (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise <br> Receptor (distance) | Wildlife (adjacent) |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no known boreholes within 1 km of the site. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | None |  | - | None within 1 km |  |
|  | Borehole Data | Depth <br> (m) | Static <br> Water <br> Level <br> (m.b.g.l.) | Water Level (m.b.g.I.) | Yield m3/hr | Drawdown (m) |
|  |  | - |  | - | - | - |
|  | Water Quality | No water quality reports available |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Victoria Nile, 160m. |  |  |  |  |
|  | Distance to Lake/River | See above. |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict |  | Subcounty |  | Parish | Village |
|  | Nwoya |  | Purongo | Murchison Falls NP |  | - |
|  | Closest Village | Receptor Detail |  | Distance to site (m) |  |  |
|  |  | None within 1 km |  | None within 1 km |  |  |
| Archeology and Cultural Heritage | No Field Survey | No Field Survey |  |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA04 | Victoria Nile Corridor <br> Key local characteristics : <br> - This site is largely characterized by dense bushland thicket typical of the vegetation within the Victoria Nile Corridor LCA. <br> - This site crosses the Murchison Falls-Albert Delta Wetland System (RAMSAR site) and the north MFNP and the landscape is entirely typical of the northern bank of the Nile and is largely enclosed from surrounding tracks. <br> - Views are entirely enclosed by dense bushland vegetation. |  |  |  |  |



| i'ientaceous species |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phytosociological description (within plot) | Hyperthelia-Maytenus-Acacia-Euphorbia Grassland with Thicket <br> Maytenus-Vepris-Kigelia Riverine forest <br> Trichilia-Kigelia-Vepris Riverine forest <br> Trichilia-Vepris-Maytenus Riverine forest <br> Ziziphus-Maytenus-Kigelia Riverine forest |  |  |  |  |  |
| Alien/Invasive Species | Yes- Chromolaena odorata. Though not registered during these surveys, invasive species Mimosa pigra, Eichhornia crassipes and Salvinia molesta are also likely to be within the site. |  |  |  |  |  |
| Flora- Protected Species | Species of conservation concern were recorded - <br> Tamarindus indica: Uganda Red List (VU); IUCN (LC) <br> Milicia excelsa (mature tree) - Iroko; IUCN Globally LR/NT; Uganda Red List (EN), CHA Criterion 1e. NFA Reserved Species |  |  |  |  |  |
| Fauna - Priority Species | There were signs of Hippo, Warthog and Baboons in this area. The area has large wallows which makes it a suitable area for Warthogs and Buffalo. The dense bushy nature of the vegetation here also suggests that Bushbuck could frequent this area Five amphibian and six reptile species were recorded at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air Receptor (distance) | Wildlife |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of 30$45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wildlife |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no known soil borings within 1 km of the site. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | None | - | - | None within 1 km |  |
|  | Borehole Data | Depth (m) | Static Water Level (m) | Water Level (m) | Yield m3/hr | Drawdown (m) |
|  |  | - | - | - | - | - |
|  | Water <br> Quality | No water quality reports available |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Victroria Nile, 198m |  |  |  |  |
|  | Distance to <br> Lake/River | See above. |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict | Subcounty |  | Parish | Village |  |
|  | Buliisa | Ngwedo |  | Nile | Kilyango LC1 |  |
|  | Closest <br> Receptor | Receptor Detail |  | Distance to site (m) |  |  |
|  |  | None within 1 km |  | None witin 1 km |  |  |
|  | Kraal in riverine forest |  |  |  |  |  |


|  | inewilouses |  |
| :---: | :---: | :---: |
| Archeology and Cultural Heritage | No Field Survey | None known. |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA04 | Victoria Nile Corridor <br> Key local characteristics: <br> - This is largely characterized by dense bushland thicket, and woodlands typical of the vegetation within the Victoria Nile Corridor LCA south of the Nile. <br> - This site sits within the south MFNP and the landscape is entirely typical of the northern bank of the Nile and is largely enclosed from surrounding tracks. <br> - Views are largely enclosed by dense vegetation however there ar eocassional glimpses beneath the canopy of more open woodland. |








| Dominami woody species |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dominant Herbaceous species | Cynodon dactylon; Cyperus papyrus, Eichhornia crassipes, Kyllinga alba, Paspalidium geminatum, Phragmites mauritianum; Phyla nodiflora, Sporobolus pyramidalis, Typha sp |  |  |  |  |  |
| Phytosociological description (within plot) | Aeschynomene-Phragmites-Typha-Cyperus Swamp <br> Cynodon-Paspalidum-Phyla Seasonally Flooded Grassland Cynodon-Paspalidum-Sporobolus Seaonally Flooded Grassland Cynodon-Sporobolus Seasonally Flooded Grassland Kyllinga-Cynodon-Sporobolus Seasonally Flooded Grassland Paspalidum-Cynodon-Phyla-Kyllinga Seasonally Flooded Grassland |  |  |  |  |  |
| Alien/Invasive Species | Invasive Eichhornia crassipes and Pistia stratiotes Invasive Eichhornia in Eichhornia-Cyperus wetland Invasive Salvinia molesta and Eichhornia crassipes |  |  |  |  |  |
| Flora- Protected Species | No threatened, rare or range-restricted species was recorded at the site |  |  |  |  |  |
| Fauna - Priority Species | Ten amphibian and six reptile species were recorded at this site. No surveys for mammals were undertaken at this site. |  |  |  |  |  |
| Physical Characteristics |  |  |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| Closet Air <br> Receptor <br> (distance) | Waluhoiza C.O.U (Church), 930m |  |  |  |  |  |
| Ambient Noise | Representative baseline daytime noise levels for the Lake Albert Water Abstraction Station have been measured at $44 \mathrm{~dB} \mathrm{~L}_{\mathrm{Aeq}, \mathrm{T}}$. Baseline noise measurements indicate that existing daytime noise levels do not exceed the IFC daytime noise level criteria (07:00-22:00 $\mathrm{L}_{\text {Aeq, } 15 \mathrm{~h}} 55 \mathrm{~dB}$ ) or Ugandan Regulations maximum permissible noise level for residential areas (06:00-22:00 $\mathrm{L}_{\text {Aeq,8h }} 45 \mathrm{~dB}$ ). |  |  |  |  |  |
| Closest Noise <br> Receptor <br> (distance) | Waluhoiza C.O.U (Church), 930m |  |  |  |  |  |
| Soils and Geology | Soil Type | There is no soil known boring within 1 km of the sites. |  |  |  |  |
| Hydrology | Closest <br> Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | - | - | - |  | - |
|  | Borehole <br> Data | Depth <br> (m) | Static Water <br> Level (m) | Water Level (m) | Yield m3/hr | Drawdown (m) |
|  |  | - | - | - | - | - |
|  | Water <br> Quality | There is no known sol boringiwthin 1 km of the site. |  |  |  |  |
| Surface Water | Closest Surface Water | Closest to Lake Albert. |  |  |  |  |
|  | Distance to Lake/River | Lake Albert, 75 m . |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict | Subcounty |  | Parish | Village |  |
|  | Buliisa | Bulisa TC |  | Northern Ward | Kisiomo |  |
|  | Closest <br> Receptor | Receptor Detail |  | Distance to Well Pad (m) |  |  |
|  |  | Waluhoiza C.O.U (Church) |  | 930 |  |  |


|  |  | Kaioio biviú olince |
| :---: | :---: | :---: |
| Archeology and Cultural Heritage | DateSurved <br> Not surveyed | An archaeological and cultural heritage survey of the area was not requested and therefore not undertaken. <br> The nearest areas where a survey was undertaken were KW-01 and KW-02. Surveys at both of these location recorded lithics, pottery sherds, graves and sacred plants. A number of kibira were also identified, as were a number of abandoned structures. <br> Archaeological and cultural heritage sites have been recorded in the course of other work in the vicinity of the Water Abstraction Point. These include burial places (including Katuugo Cemetery), Waluhoiza Church of Uganda, Covenant Pentecostal Church and Full Gospel Church, and a sacred Bibaale tree. These are all located in Kisiimo Cell. |
| Landscape and Visual Amenity | Landscape Character Area LCA03 | Lake Albert Coastal Fringe <br> Key local characteristics: <br> - This site is characterized by the costal lowlands typical of the eastern banks of Lake Albert. <br> - Landform is low-level and vegetation is comprised of wetland grassland species. <br> - This site is connected to residential areas through a network of informal tracks but there is no infrastructure of note. <br> - Views are open and panoramic and visual amenity is orientated west across the lake and the mountain range across the backdrop. |



| description (wituin plot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Alien/Invasive Species | None recorded |  |  |  |
| Flora- Protected Species | Albizia grandibracteata: (Red Nongo) NFA Reserved Species; Uganda Red List (VU), IUCN (Not assessed) Albizia coriaria NFA Reserved Species |  |  |  |
| Fauna - Priority Species | No detailed survey for fauna was undertaken at this site. |  |  |  |
| Physical Characteristics |  |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |
| Closet Air Receptor (distance) | Kasinyi Musingabakazi, 77m |  |  |  |
| Ambient Noise | Ambient noise levels are influenced by and reflective of daily human activities (shops, people, and diesel engines). The daytime noise levels range between 50-70 dB(A) Leq. Nighttime levels would be lower. |  |  |  |
| Distance from Site boundary (not centre of site) | Settlements | Healthcare | Worship | Education |
| Wellpad (operational phase, DAYTIME) |  |  |  |  |
| 0-150m | Approx. 12 <br> settlements 30 m - <br> 150 m to south in village of Uduk II. <br> Approx. 24 settlements 0m 150 m to north in village of Kasinyi | None | None | None |
| 150-950m | Approx. 25 <br> settlements 175m - <br> 950 m to south east in village of Uduk II; <br> Approx. 1 settlement 260m to south in Kibambura; Approx. 20 settlements to $450 \mathrm{~m}-950 \mathrm{~m}$ to east in Kisomere. <br> Approx. 110 settlements 150 m 950 m to north in village of Kasinyi | None | None | Kasinyi St Lawrence Nursery School - 820m to north |
| Wellpad (operational phase, NIGHT) |  |  |  |  |
| 0-40m | Approx. 1 settlement 30 m to south in village of Uduk II. <br> Approx. 9 settlements 0m-40m to north in village of Kasinyi | None | None | None |
| 40-225m | Approx. 15 <br> settlements 75 m - <br> 180 m to south in <br> village of Uduk II. <br> Approx. 30 <br> settlements 40 m - | None | None | None |




|  | iviay 2017 | Burial places |
| :---: | :---: | :---: |
|  |  | Burial places comprise a graveyard with ten burials and a Bacchwa clan graveyard. A further 49 graves were recorded during the RAP survey. <br> Cultural sites <br> The CPF area contains a relatively large number of cultural sites. These include: <br> - a spear kibira surrounded by Lenga plants <br> - the kibira of Tundulu Bidindwa of the Bacchwa clan, located in a Musingabakazi tree close to the clan graveyard <br> - a shrine for the Kirunga spirit, a big Musingabakazi tree with a small thatched hut <br> - the kibira of Kabagambe, located within Kabagambe's compound <br> - the kibira of the Bawala clan <br> - the Balyambwa shrine <br> - a kibira in a Barkcloth tree <br> - the kibira of Aeron Katogole <br> - family shrines in Tamarind trees <br> - a family shrine for healing <br> - three further family shrines and two further cultural sites. <br> A large tamarind tree is used as a medicinal plant for Kasinyi village. It has been used as a school and a polling station. <br> A cultural site immediately northwest of the CPF area is Munyagi, used by the Basiita clan throughout the entire Bunyoro region. It is located in in a Musingabakazi tree. <br> Medicinal and cultural uses of plants <br> Medicinal plants included tamarind, cactus for the treatment of amakebe in young cows, neem trees( Azadirachta indica), Kamunye, Omusomo, mahogany (Muvule) and mango trees. |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA01 | Buliisa Lowland Pastoral Farmland <br> Key local characteristics: <br> - This is site lies at the boundary of the pastoral lowlands and the rolling farmlands LCA to the east, but is largely characterized by grazing land and dense bushland vegetation. <br> - The site also includes a number of residential dwellings linked by a local network of informal paths. <br> - There is no formal or substantial infrastructure beyond basic dwellings. <br> - Landform is gently rolling and covered in bush grassland and numerous mature trees. <br> - Views vary from occasional long glimpses across the landscape and shorter range views fragmented by trees and taller grassland vegetation. |



| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Closet Air <br> Receptor <br> (distance) | Wild Frontiers and MFNP ferry crossing and lodges |  |  |  |  |  |
| Ambient Noise | Noise associated with ferry operations. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wild Frontiers and MFNP ferry crossing and lodges; adjacent and within 500 m |  |  |  |  |  |
| Soils and Geology | Soil Type | There is no known soil boring withn 1 km of the site. |  |  |  |  |
| Hydrology | Closest <br> Known Well | DWRM <br> ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | - | - | - |  | - |
|  | Borehole Data | Depth <br> (m) | Static Water <br> Level (m) | Water Level (m) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | - | - | - | - | - |
|  | Water Quality | There | no water qualit | rts available. |  |  |
| Surface Water | Closest <br> Surface <br> Water | Victoria | ile, 50 m . |  |  |  |
|  | $\begin{aligned} & \text { Distance } \\ & \text { to } \\ & \text { Lake/River } \end{aligned}$ | See ab |  |  |  |  |
| Socioeconomic | haracterist |  |  |  |  |  |
| Social | Distict |  | unty | Parish |  | Village |
|  | Buliisa |  | edo | chison Falls NP |  | - |
|  | Closest |  | Receptor Details | Distance | faciltiy (m) |  |
|  | Receptor | Wild Fr | tiers and lodges | Adjacent | nd witin 500 m |  |
| Archaeology and Cultural Heritage | Date <br> Surveyed <br> 28 June <br> 2017 | Archaee <br> Late Sto <br> Pottery <br> Medicin <br> Medicin <br> Kulumb | ical remains <br> Age single-and rds were record <br> nd cultural uses <br> lants included $N$ | platform cores as catters included iro ants uula and Mulolo/Y | Il as cores, sc working tuyère <br> go/sausage (Ki | es, and a double bored stone. and roulette-decorated pottery. <br> lia africana) trees and |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area <br> LCA04 | Victoria <br> Key lo | e Corridor <br> characteristics <br> his is largely ch banks of the Nil his site sits with the north MFNP iews are chann quality. | rized by dense bus <br> Murchison Falls-A the landscape is en long the Nile itself | land thicket w <br> ert Delta Wetla rely typical of hich are occas | and vegetation along the north <br> System (RAMSAR site) and north bank of the Nile. al long distance and of notable |


| 42. Victoria <br> Nile Ferry <br> Crossing <br> (S) | MFNP |  |  |
| :---: | :---: | :---: | :---: |
| Location Block | CA1 |  | + |
| Field | NA |  | Hera |
| Coordinates | - | - |  |
| Elevation (m) | 616 |  |  |
| Terrain | sloping |  |  |
| Slope (degrees) and Aspect | 4.870799 | North |  |
| Area | 2,330m ${ }^{2}$ | 0.233ha |  |
| District | Buliisa, MFNP |  |  |
| CHA habitat type | Natural |  |  |
| Survey date(s) and Type | 19 April 2017 (Detailed), 2 July 2017 (Detailed) |  |  |
| BIODIVERSITY |  |  |  |
| Site description | This site is along the Nile River just a few tens of metres from the jetty on the south end of the Nile. |  |  |
| Vegetation type(s) (WCS mapping) | Phragmites-Vossia-Cyperus swamp fringed by Acacia-Combretum bushland Sesbania sesban and floating Salvinia molesta on the edge of the River. |  |  |
| Vegetation types recorded (microhabitats) | The vegetation is Phragmites-Vossia-Cyperus swamp fringed by Acacia-Combretum bushland Sesbania sesban and floating Salvinia molesta on the edge of the River. Sesbania sesban; Acacia senegal; Kigelia africana are dominant in the woody layer of the Bushland while Phragmites mauritianum; Vossia cuspidata; Cyperus papyrus are the dominant herbaceous species |  |  |
| Main Biological and Social Features | None identified |  |  |
| Notable Biological and Social Features | None identified. |  |  |
| Dominant Woody Species | Sesbania sesban; Acacia senegal; Kigelia africana |  |  |
| Dominant Herbaceous species | Phragmites mauritianum; Vossia cuspidata; Cyperus papyrus |  |  |
| Phytosociological Description | Sesbania-Acacia-Kigelia swamp |  |  |
| Alien/Invasive Species | Yes- Eichhornia crassipes, Mimosa pigra, Salvinia molesta, Uraria picta |  |  |
| Flora- Protected Species | No threatened, rare or range-restricted species was recorded at the site. |  |  |
| Fauna - Priority Species | There were signs of Hippo, Warthog and Baboons in this area. The area has large wallows which makes it a suitable area for Warthogs and Buffalo. The dense bushy nature of the vegetation here also suggests that Bushbuck could frequent this area Five amphibian and six reptile species were recorded at this site. |  |  |
| Physical Characteristics |  |  |  |
| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |
| Closet Air Receptor | Weild Frontierrs, lodges |  |  |


| (aistance) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; 33-49 dB(A) (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wild Frintiers, Paraa Safari Lodge |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no known borings within 1 km of the site. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Well Pad (m) |  |
|  |  | - | - |  |  |  |
|  | Borehole Data | Depth (m) | Static <br> Water <br> Level (m) |  | Yield m3/hr | Drawdown (m) |
|  |  | - | - |  | - | - |
|  | Water <br> Quality | There are no water quality reports available. |  |  |  |  |
| Surface Water | Closest <br> Surface <br> Water | Victoria Nile, 86m. |  |  |  |  |
|  | Distance to Lake/River | See above. |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict |  | Subcounty |  | Parish | Village |
|  | Buliisa |  | Ngwedo |  | rchison Falls NP | - |
|  | Closest <br> Receptor | Receptor Details |  |  | Distance to Pad (m) |  |
|  |  | Wild Friontiers, Paara Ferry, Paraa Lodge |  |  | Adjacent and within 500 m |  |
| Archaeology and Cultural Heritage | Date Surveyed <br> 28 June 2017 | Late Stone Age single-and multi-platform cores as well as cores, scrapes, and a double bored stone. Pottery sherds. Scatters included ironworking tuyères and roulette-decorated pottery. <br> Medicinal and cultural uses of plants <br> Medicinal plants included Mbumbuula and Mulolo/Yago/Sausage (Kigelia africana) trees and Kulumbero. |  |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character Area <br> LCA04 | Victoria Nile Corridor <br> Key local characteristics: <br> - This is largely characterized by dense bushland thicket wetland vegetation along the north banks of the Nile. <br> - This site sits within the Murchison Falls-Albert Delta Wetland System (RAMSAR site) and the north MFNP and the landscape is entirely typical of the south bank of the Nile. <br> - Views are channeled along the Nile itself which are occasional long distance and of notable quality. |  |  |  |  |



| Ambient Air Quality | Consistent with rural conditions; good quality. $\mathrm{PM}_{10}$ and TSP increase during dry periods. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Closet Air Receptor (distance) | Wildlife, adjacent |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. Levels in the range of $30-45 \mathrm{~dB}(\mathrm{~A})$ (Leq) were noted within MFNP. Night time levels are higher; $33-49 \mathrm{~dB}(\mathrm{~A})$ (Leq) attributed to the increased noise from insects. |  |  |  |  |  |
| Closest Noise Receptor (distance) | Wildlife, adjacent |  |  |  |  |  |
| Soils and Geology | Soil Type | There are no known soil borings within 1 km of the site. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Pad (m) |  |
|  |  | - | - | - |  |  |
|  | Borehole Data | Depth (m) | Static Water <br> Level (m) | Water Level (m) | Yield <br> $\mathrm{m}^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  |  | - | - |  | - |
|  | Water Quality | There are no water quality reports avaialable. |  |  |  |  |
| Surface Water | Closest Surface Water | Not identified, 200m. |  |  |  |  |
|  | Distance to Lake/River | Victoria Nile, 6,456m. |  |  |  |  |
| Socioeconomic Characteristics |  |  |  |  |  |  |
| Social | Distict | Subcounty |  | Parish | Village |  |
|  | Masindi | Murchison Falls NP |  | Murchison Falls NP |  | - |
|  | Closest Receptor | Receptor Details |  | Distance to Well Pad (m) |  |  |
|  |  | Mabaku Town Lodge |  | 5,168 |  |  |
| Archaeology and Cultural Heritage | Date Surveyed <br> Not Surveyed | An archaeological and cultural heritage survey of the area was not requested and therefore not undertaken. The nearest areas where a survey was undertaken were to the west at NSO-06, NSO-02 and KGG-05, all of which were over 8 km away. <br> Two archaeological assets have been recorded by other surveys in the area of the airfield. A sacred tree has also been recorded to the west of the airfield. |  |  |  |  |
| Landscape and Visual Amenity | Landscape Character Area LCA02 | Buliisa Lowland Rolling Farmland <br> Key local characteristics: <br> - This site is characterized by the existing airstrip and therefore flat and open but is enclosed by fencing and surrounding vegetation. <br> - Views from the site are enclosed by the surrounding woodland and bushland vegetation |  |  |  |  |



| Quamity |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Closet Air Receptor (distance) | None within 1 km |  |  |  |  |  |
| Ambient Noise | Noise levels are consistent with the overall absence of anthropogenic noise sources. |  |  |  |  |  |
| Closest Noise Receptor (distance) | None within 1 km |  |  |  |  |  |
| Soils and Geology | Soil Type | No known soil boring at the site. |  |  |  |  |
| Hydrology | Closest Known Well | DWRM ID | Coordinates |  | Distance to Pad (m) |  |
|  |  | - | - |  |  | - |
|  | Borehole Data | Depth (m) | Static Water Level (m) | Water Level (m) | Yield m ${ }^{3} / \mathrm{hr}$ | Drawdown (m) |
|  |  | - | - | - | - | - |
|  | Water <br> Quality | No wate | quality data av <br> DWD26516 - 5 <br> DWD32389-798 <br> DWD32859 - 73 | . The closest | holes are: |  |
| Surface Water | Closest Surface Water | River Bi | aizi, 600m. |  |  |  |
|  | Distance to Lake/River | See abo |  |  |  |  |
| Socioeconomic | aracteristi |  |  |  |  |  |
| Social | Distict | Sub | ounty | Parish |  | Village |
|  | Masindi |  | sindi | Masindi |  | Kyamugwera |
|  | Closest |  | Receptor Detai | Distan | o Site (m) |  |
|  | Receptor | None wi | hin 1 km | None | in1km |  |
| Archaeology and Cultural Heritage | Date <br> Surveyed <br> Not <br> Surveyed | None rep | rted. |  |  |  |
| Landscape and Visual Amenity | Landscape <br> Character <br> Area | NA |  |  |  |  |

This page has intentionally been left blank to allow for double sided printing

Annex A

Satellite Imagery Major Infrastucture

## Annex A Satellite Imagery Major Infrastructure

| Project Layout |  |
| :--- | :--- |
| A. 1 | JBR -01 |
| A. 2 | JBR -02 |
| A. 3 | JBR -03 |
| A. 4 | JBR -04 |
| A. 5 | JBR -05 |
| A. 6 | JBR -06 |
| A. 7 | JBR -07 |
| A. 8 | JBR -08 |
| A. 9 | JBR -09 |
| A. 10 | JBR -10 |
| A. 11 | GNA-01 |
| A. 12 | GNA-02 |
| A. 13 | GNA-03 |
| A. 14 | GNA-04 |
| A. 15 | KGG-01 |
| A. 16 | KGG-03 |
| A. 17 | KGG-04 |
| A. 18 | KGG-05 |
| A. 19 | KGG-06 |
| A. 20 | KGG-09 |


| A. 21 | KW-01 |
| :--- | :--- |
| A. 22 | KW-02a |
| A. 23 | KW-02b |
| A. 24 | NGR-01 |
| A. 25 | NGR-02 |
| A. 26 | NGR-03A |
| A. 27 | NGR-05A |
| A. 28 | NSO-01 |
| A. 29 | NSO-02 |
| A. 30 | NSO-03 |
| A. 31 | NSO-04 |
| A. 32 | NSO-05 |
| A. 33 | NSO-06 |
| A. 34 | Victoria Nile HDD Crossing (N\&S) - |
| Aption 1 | Victoria Nile HDD Crossing (N\&S) - |
| A. | Option 2 |
| A. 36 | Water Abstraction Station |
| A. 37 | Industrial Area |
| A. 38 | Nile Ferry Crossing (N\&S) |
| A. 39 | Bugungu Airstrip |
| A. 40 | Masindi Vehicle Check Point |



## FACT SHEET - PROJECT LAYOUT OVERVIEW

| $\square$ Project Area | - New roads |
| :--- | :--- |
| $\square$ Wellpad Extent - Maximum | - Upgraded roads |
| Water Abstraction System | - Inter field access roads |
| Victoria Nile Pipeline HDD Crossing - Option 1 | - Watercourse |
| Victoria Nile Pipeline HDD Crossing - Option 2 | DWRM Well |
| Victoria Nile Ferry Crossing |  |
| $\square$ Production and Injection Network |  |
| $\square$ Industrial Area |  |
| $\square$ Camp |  |
| $\square$ Magungu Airstrip |  |



## FACT SHEET - WELLPAD JBR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
Victoria Nile Pipeline HDD
(2) Crossing - Option 1
- Production and Injection Network
- Parish

ITVillage

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-02

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
$A E C O M$


## FACT SHEET - WELLPAD JBR-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

ILVillage

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish
|ll
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-05

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-07

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© - Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD JBR-08

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish


Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse



## FACT SHEET - WELLPAD JBR-09

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse
- TEPU Biodiversity and Social Surveys (2016-2017)
$A=C O M$



## FACT SHEET - WELLPAD JBR-10

- Wellpad location
$\square$ Wellpad Extent - Maximum Victoria Nile Pipeline HDD (Q) Crossing - Option 2
- Production and Injection Network
- Parish

IVVillage

Main Social Receptors

- Settlement

5 School
4. Lodge

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018) TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD GNA-01

- Wellpad location
$\square$ Wellpad Extent - Maximum


## ndustrial Area

- Production and Injection Network
- Parish

LVIVIlage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
Cattle corridor


## FACT SHEET - WELLPAD GNA-02

- Wellpad location
$\square$ Wellpad Extent - Maximum
— Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

ILTVillage

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse
+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
Main Social Receptors
- Settlement

5 School
Lodge

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor
$A E C O M$


## FACT SHEET - WELLPAD GNA-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish


Main Social Receptors

- Settlement

5 School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD GNA-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

IVVillage

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
Main Social Receptors
- Settlement

5 School
Lodge


## FACT SHEET - WELLPAD KGG-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

L-7Village

Main Social Receptors

- Settlement

S School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse
AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor



## FACT SHEET - WELLPAD KGG-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

IV Village

Main Social Receptors

- Settlement
s School
Lodge
+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


Source: Esri World Topographic Map

## FACT SHEET - WELLPAD KGG-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

IV Village

Main Social Receptors

- Settlement

5 School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD KGG-05

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

L-7Village

Main Social Receptors

- Settlement

S School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD KGG-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor
$A$


## FACT SHEET - WELLPAD KGG-09

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

L-7Village

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - WELLPAD KW-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

ILVillage

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD KW-02A

- Wellpad location
$\square$ Wellpad Extent - Maximum
-Production and Injection Network - Parish


Main Social Receptors

- Settlement

5 Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

DWRM / MW Well

- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD KW-02B

- Wellpad location
$\square$ Wellpad Extent - Maximum
$\checkmark$ Water Abstraction System
- Production and Injection Network
- Parish

ILVillage

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
Cattle corridor

- Settlement

5 School Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse
s
AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor
 1



## FACT SHEET - WELLPAD NGR-02

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

Ll7Village

Main Social Receptors

- Settlement

5 School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NGR-03A

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

DWRM / MW Well

- New roads
- Upgraded roads
— Inter field access roads - Watercourse

| 5 School | - Upgraded roads |
| :---: | :---: |
| Lodge | - Inter field access roads |
| Clinic / Drug Shop / Health Center | - Watercourse |
| $\pm$ Place of worship |  |
| Place of worship - Mosque |  |

Main Social Receptors
5
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque



## FACT SHEET - WELLPAD NGR-05A

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 chool Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

DWRM / MW Well

- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NGR-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social
Surveys (2016-2017)
Cattle corridor


## FACT SHEET - WELLPAD NSO-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

ㄴㄱVillage

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NSO-02

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish


Main Social Receptors

- Settlement

S School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NSO-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network


## - Parish

VVillage

Main Social Receptors

- Settlement
s School
Lodge
+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NSO-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

VIVillage

Main Social Receptors

- Settlement

S School
Lodge

+ Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NSO-05

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

L-7Village

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WELLPAD NSO-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish
ILVillage
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque


## FACT SHEET - VICTORIA NILE PIPELINE HDD CROSSING - OPTION 1

(a) Victoria Nile Pipeline HDD

Crossing - Option 1

- Production and Injection Network - Parish


Main Social Receptors

- Settlement
s School
- 1 Lodge

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
— New roads
— Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018) TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - VICTORIA NILE PIPELINE HDD CROSSING - OPTION 2

- Wellpad location
$\square$ Wellpad Extent - Maximum
(ब) Victoria Nile Pipeline HDD
Crossing - Option 2
- Production and Injection Network
- Parish

IIVVillage

Main Social Receptors

- Settlement

5 School
슨 Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
— Inter field access roads
— Watercourse
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - WATER ABSTRACTION SYSTEM

$\square$ Wellpad Extent - Maximum
$\checkmark$ Water Abstraction System

- Production and Injection Network
- Parish

IVVillage

Main Social Receptors

- SettlementSchool

삽 Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
( * Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse
- 

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - INDUSTRIAL AREA

| $\square$ Industrial Area | Main Social Receptors |
| :--- | :--- |
| $\square$ CPF | - Settlement |
| —Production and Injection Network | s School |
| $\square$ Parish | Lodge |
| $\square=$ Village | Clinic / Drug Shop / Health Center |
|  | $\pm$ Place of worship |
|  | ※ Place of worship - Mosque |


| - DWRM / MW Well | AECOM Biodiversity Surveys <br> $(2016-2018)$ |
| :--- | :--- |
| — New roads | TEPU Biodiversity and Social <br> - Upgraded roads |
| Surveys (2016-2017) |  |
| — Inter field access roads Cattle corridor |  |




## FACT SHEET - BUGUNGU AIRSTRIP



- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads —Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## Annex B

## Annex B Satellite Imagery of Borrow Pits

Borrow Pit Overview
B. $1 \quad$ UWA Begeri Park Borrow Pit
B. 2 Ajigo Borrow Pit 1
B. $3 \quad$ Uduku Borrow Pit 1
B. $4 \quad$ Kisomere Borrow Pit 1
B. $5 \quad$ Kisomere Borrow Pit 2
B. $6 \quad$ Kisomere Borrow Pit 3
B. 7 Kisomere Borrow Pit 4
B. 8 Kisomere Borrow Pit 5
B. 9 Kisomere Borrow Pit 6
B. 10 Kisomere Community
B. 11 UWA Park Borrow Pit (Alternative)
B. 12 Kilyango Borrow Pit
B. 13 Avogera Borrow Pit
B. 14 Got Apwoyo Borrow Pit 1
B. 15 Got Apwoyo Borrow Pit 2
B. 16 Til 1 Borrow Pit
B. 17 UWA Park Borrow Pit 3 and 4
B. 18 Pakuba Airstrip Borrow Pit 2
B. 19 Jobi 6-3 Borrow Pit
B. $20 \quad$ Buligi Track Borrow Pit


## FACT SHEET - BORROW PIT OVERVIEW


$\square$ Wellpad Extent - Maximum

- Water Abstraction System
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Victoria Nile Pipeline HDD Crossing - Option 1
Victoria Nile Pipeline HDD Crossing - Option 2

- Victoria Nile Ferry Crossing
- Production and Injection Network
$\square$ Industrial Area
Camp
$\square$ Bugungu Airstrip
- Murram Borrow Pit Location
- DWRM Well



## FACT SHEET - UWA BEGERI PARK BORROW PIT

- Murram Borrow Pit Location Main Social Receptors

IV Village

- Settlement
s School
Lodge
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- AECOM Biodiversity Surveys (2016-2018) TEPU Biodiversity and Social Surveys (2016-2017)
$A E C O M$



## FACT SHEET - AJIGO BORROW PIT 1 <br> FACT SHEET -AJGO BORROW PI 1



- AECOM Biodiversity Surveys (2016-2018) TEPU Biodiversity and Social Surveys (2016-2017)
-Murram Borrow Pit Location Main Social Receptor
- DWRM / MW Well
- Upgraded roads
— Inter field access roads
- Watercourse
© $\star$ Place of worship - Mosque
ettlemen
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
- 



## FACT SHEET - UDUKU BORROW PIT






























#### Abstract

$\qquad$




$\qquad$

#  



## ${ }_{N}^{N}$ <br> $$
N^{N}
$$



## FACT SHEET - KISOMERE BORROW PIT 3

- Murram Borrow Pit Location
- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

LTVillage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© * Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - KISOMERE BORROW PIT 5

- Murram Borrow Pit Location
- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

IIVVillage

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - KISOMERE BORROW PIT 6

$\square$ Murram Borrow Pit Location
$\square$ Wellpad Extent - Maximum

- Production and Injection Network
- Parish

LIVillage

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


FACT SHEET - KISOMERE COMMUNITY BORROW PIT

- Murram Borrow Pit Location
- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

LTVillage

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

$\qquad$

$\qquad$
$\qquad$







## FACT SHEET - AVOGERA BORROW PIT




## FACT SHEET - GOT APWOYO BORROW PIT 1

- Murram Borrow Pit Location Main Social Receptors
- Parish
ㄴ7Village
- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse



## FACT SHEET - GOT APWOYO BORROW PIT 2

## -Murram Borrow Pit Location Main Social Receptors

| $\square$ Parish | - Settlement |
| :--- | :--- |
|  | s School |
|  | A. Lodge |
|  | Clinic / Drug Shop / Health Center |
|  | 士 Place of worship |
|  | ※ Place of worship - Mosque |

$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse
- AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)



## FACT SHEET - TILL 1 BORROW PIT

- Murram Borrow Pit Location Main Social Receptors

Parish
LVVillage

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse
- Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© * Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - UWA PARK BORROW PIT 4

## -Murram Borrow Pit Location Main Social Receptors

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)

$A^{N}$

MURCHISONEALLS NP

## FACT SHEET - PAKUBA AIRSTRIP BORROW PIT 2

## - Murram Borrow Pit Location Main Social Receptors

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse
- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018) TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - JOBI 6-3 BORROW PIT

| -Murram Borrow Pit Location <br> - Wellpad location | Main Social Receptors <br> - Settlement | - DWRM / MW Well <br> - New roads | AECOM Biodiversity Surveys (2016-2018) |
| :---: | :---: | :---: | :---: |
| $\square$ Wellpad Extent - Maximum | 5 School | - Upgraded roads | TEPU Biodiversity and Social |
| -Production and Injection Network | Lodge | - Inter field access roads | Surveys (2016-2017) |
| Parish | Clinic / Drug Shop | - Watercourse |  |
| - ${ }^{-7}$ Village | $\pm$ Place of worship |  |  |

© $\star$ Place of worship - Mosque

- DWRM / MW Well

New roads
Upgraded
— Inter field access roads

- Watercourse
$\pm$ Place of worship

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - BULIGI TRACK BORROW PIT

- Murram Borrow Pit Location Main Social Receptors



## Annex C

## Annex C Satellite Imagery of Flowlines

Flowlines Overview
C. 1 GNA-01 to CPF
C. 2 GNA-02 to GNA-04
C. 3 GNA-04 to GNA-01
C. 4 GNA-04 to GNA-03
C. 5 KGG-01 to KGG-04
C. 6 KGG-03 to KGG-01
C. 7 KGG-04- to NSO-04
C. 8 KGG-05 to NSO-02
C. 9 KGG-06 to KGG-04
C. 10 KGG-09 to KGG-04
C. 11 KW01 to KW-02A
C. 12 KW02A to KW02B
C. 13 KW-02B to NGR-06
C. 14 NIV to GNA 01
C. 15 NIV to NGR01
C. 16 NGR-01 to CPF
C. 17 NGR-02 to NGR-01
C. 18 NGR-03A to NGR-05A
C. 19 NGR-05A to CPF
C. 20 NGR-06 to NGR-05A
C. 21 NSO-01 to NSO-05
C. 22 NSO-02 to NSO-06
C. 23 NSO-03 to CPF
C. 24 NSO-04 to NSO-03
C. 25 NSO-05 to NSO-03
C. 26 NSO-06 to NSO-01
C. 27 Water station to KW-02B
C. 28 JBR-01 to NIV (Opt 1)
C. 29 JBR-02 to JBR-01
C. 30 JBR-03 to JBR-01
C. 31 JBR-04 to JBR-03
C. 32 JBR-05 to JBR-03
C. 33 JBR-06 to JBR-05
C. 34 JBR-07 to JBR-06
C. 35 JBR-08 to JBR-07
C. 36 JBR-09 to JBR-08
C. 37 JBR-10 to JBR-01 - Alt
C. 38 JBR10 to NIV (NXN) New Crossing North


## FACT SHEET - PROJECT LAYOUT OVERVIEW

| $\square$ Project Area | - New roads |
| :--- | :--- |
| $\square$ Wellpad Extent - Maximum | - Upgraded roads |
| Water Abstraction System | - Inter field access roads |
| Victoria Nile Pipeline HDD Crossing - Option 1 | - Watercourse |
| Victoria Nile Pipeline HDD Crossing - Option 2 | DWRM Well |
| Victoria Nile Ferry Crossing |  |
| $\square$ Production and Injection Network |  |
| $\square$ Industrial Area |  |
| $\square$ Camp |  |
| $\square$ Magungu Airstrip |  |



## FACT SHEET - FLOWLINE GNA-01 to CPF

- Wellpad location
$\square$ Wellpad Extent - Maximum $\square$ Industrial Area


## $\square$ CPF

- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish
- Village

Main Social Receptors

- Settlement

5 School

- 1 Lodge
$+$
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
Cattle corridor


## FACT SHEET - FLOWLINE GNA-02 to GNA-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

IVTVillage

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE GNA-04 to GNA-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish
47 Village
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse
- AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor



## FACT SHEET - FLOWLINE GNA-04 to GNA-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish
|l| Village
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque


## FACT SHEET - FLOWLINE KGG-01 to KGG-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

#  

f
$44^{55^{5}}$
Thin de
$\qquad$
$\qquad$


## FACT SHEET - FLOWLINE KGG-04 to NSO-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

## FACT SHEET - FLOWLINE KGG-05 to NSO-02

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish

Ll-7Village

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse


AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
$A E C O M$

$$
\Gamma
$$



## FACT SHEET - FLOWLINE KGG-06 to KGG-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

Hene
$A E C O M$


## FACT SHEET - FLOWLINE KGG-09 to KGG-04

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE KW-01 to KW-02A

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5


Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE KW-02A to KW-02B

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
C Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE KW-02B to NGR-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement
s School
- 1 Lodge

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social
Surveys (2016-2017)
Cattle corridor


## FACT SHEET - FLOWLINE NIV (Option 1) to CPF

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque


## FACT SHEET - FLOWLINE NIV (Option 2) to CPF via NGR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
$\square$ Industrial Area


## $\square$ CPF

—Production and Injection Network
Parish
IVVillage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque


## FACT SHEET - FLOWLINE NIV (Option 2) to CPF via NGR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
$\square$ Industrial Area


## $\square$ CPF

—Production and Injection Network
Parish
IVVillage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque


## FACT SHEET - FLOWLINE NGR-02 to NGR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
Victoria Nile Pipeline HDD Crossing - Option 2


## $\square$ Industrial Area

$\square$ CPF

- Production and Injection Network
- Parish
||lV Village

Main Social Receptors

- Settlement
s School
산 Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE NGR-03A to NGR-05A

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social
Surveys (2016-2017)
Cattle corridor


## FACT SHEET - FLOWLINE NGR-05A to CPF

$\square$ Wellpad Extent - Maximum $\square$ Industrial Area
$\square \mathrm{CPF}$

- Production and Injection Network
- Parish

IVVillage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque



## FACT SHEET - FLOWLINE NGR-06 to NGR-05A

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5
School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social
Surveys (2016-2017)
Cattle corridor


## FACT SHEET - FLOWLINE NSO-01 to NSO-05

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE NSO-02 to NSO-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE NSO-03 to CPF

- Wellpad location
$\square$ Wellpad Extent - Maximum
$\square$ Industrial Area
$\square$ CPF
-Production and Injection Network


## - Parish

|LTVillage

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

- Settlement

5 School
Lodge


## FACT SHEET - FLOWLINE NSO-04 to NSO-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE NSO-05 to NSO-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE NSO-06 to NSO-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish
ㄴVillage

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE Water station to KW-02B

- Wellpad location
$\square$ Wellpad Extent - Maximum
$\checkmark$ Water Abstraction System
- Production and Injection Network
- Parish

IV Village

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads - Watercourse

Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
Main Social Receptors

- Settlement
s School
Lodge

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor


## FACT SHEET - FLOWLINE JBR-01 to NIV (Option 1)

- Wellpad location
$\square$ Wellpad Extent - Maximum
Victoria Nile Pipeline HDD
${ }^{\otimes}$ Crossing - Option 1
- Production and Injection Network
- Parish

IVVillage

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - FLOWLINE JBR-02 to JBR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
Parish

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
$A E C O M$


## FACT SHEET - FLOWLINE JBR-03 to JBR-01

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - FLOWLINE JBR-04 to JBR-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish
|l| Village
- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse

Main Social Receptors

- Settlement
s School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - FLOWLINE JBR-05 to JBR-03

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
$\bar{A} \bar{A} C O M$

## FACT SHEET - FLOWLINE JBR-06 to JBR-05

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
$\square$ Murram Borrow Pit Location
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)

AECOM


## FACT SHEET - FLOWLINE JBR-07 to JBR-06

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network - Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
- Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)


## FACT SHEET - FLOWLINE JBR-08 to JBR-07

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish


Main Social Receptors

- Settlement

5 School
Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
© $\star$ Place of worship - Mosque

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse
$N^{N}$


## MURCMSON FALLSNP

## FACT SHEET - FLOWLINE JBR-09 to JBR-08

- Wellpad location
$\square$ Wellpad Extent - Maximum
- Production and Injection Network
- Parish

- DWRM / MW Well
- New roads
- Upgraded roads
— Inter field access roads
- Watercourse


Clinic / Drug Shop / Health Center

Main Social Receptors

- Settlement

5 School
Lodge
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
-

1,000 Metres
(*)

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)

$\hat{N}^{N}$

## MURCHISON EALLSNP



## FACT SHEET - FLOWLINE JBR-10 to JBR-01

| Wellpad location | Main Social Receptors | - DWRM / MW Well |
| :---: | :---: | :---: |
| $\square$ Wellpad Extent - Maximum | - Settlement | - New roads |
| - Production and Injection Network | 5 School | - Upgraded roads |
| - Parish | 4 - Lodge | - Inter field access roads |
| $1{ }^{1}$ TVillage | Clinic / Drug Shop / Health Center | - Watercourse |
|  | $\pm$ Place of worship |  |
|  | © Place of worship - Mosque |  |

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017)
$\pm$ Place of worship
© $\star$ Place of worship - Mosque
Main Social Receptors
5 School
Lodge
Clinic / Drug Shop / Health Center

- DWRM / MW Well
- New roads
— Inter field access roads
- Watercourse
$\overline{A E C O M}$



## FACT SHEET - FLOWLINE JBR-10 to NIV (Option 2)

- Wellpad location
$\square$ Wellpad Extent - Maximum Victoria Nile Pipeline HDD - Crossing - Option 2
- Production and Injection Network
- Parish
|lVVillage

Main Social Receptors

- Settlement
s School
난 Lodge
Clinic / Drug Shop / Health Center
$\pm$ Place of worship
( $\star$ Place of worship - Mosque
- DWRM / MW Well
— New roads
— Upgraded roads
— Inter field access roads
- Watercourse

AECOM Biodiversity Surveys (2016-2018)
TEPU Biodiversity and Social Surveys (2016-2017) Cattle corridor

# TILENGA PROJECT ESIA - 

 APPENDIX C:Early Works Project Brief (PB) Executive Summary and Enabling Infrastructure Geotechnical surveys PB Executive Summary

This page has intentionally been left blank to allow for double sided printing

## TILENGA EARLY WORKS

## PROJECT BRIEF



## SUBMISSION



## Total E\&P Uganda

Course View Towers
Plot 21, Yusuf Lule Road,
P.O. Box 34867, Kampala - Uganda

Tel: +256204916000
Web: www.ug.total.com


COMMITTED TO BETTER ENERGY

## AIR WATER EARTH (AWE) - ENGINEERS LTD

M1, 27Binayomba Road, Bugolobi
PO Box 22428, Kampala
Office T: +256-41-4268466
M: +256-78-2580480/ 077-2496451
E: mail@awe-engineers.com
W: www.awe-engineers.com


February 2018

AWE is member of International
Federation of Consulting
Engineers (FIDIC-GAMA)

## Early Works Project Brief - Executive Summary - Re-submission

## EXECUTIVE SUMMARY

## 01. Background

With the target to achieve first oil 2020, GoU awarded production licenses to Total Exploration and Production Uganda B.V. (TEPU) and its two joint venture partners Tullow Uganda Operations Pty Ltd. (TUOP) and CNOOC Uganda Ltd. (CUL) in 2012 to CUL and in 2016 to TEPU and TUOP to develop and operate upstream petroleum facilities in the Albertine Graben.

TEPU has been licensed to develop oil wells in Contract Area 1 (CA1), while TUOP is licensed to develop those in Licence Area 2 (LA2). The Tilenga project is being developed by the Joint Venture (JV) Partners. Tilenga is the project name for the development of petroleum production facilities in CA1 and the Northern part of the LA2 located in Buliisa and Nwoya Districts in Uganda. The name Tilenga is derived from the 2 local names for the Uganda Kob (Antelop), called Til in Acholi and Engabi in Lugungu.

An ESIA for the Tilenga Project is also being undertaken (hereafter referred to as Tilenga ESIA) based on the approved Terms of Reference from NEMA. The Tilenga ESIA will cover all Project components and address potential environmental and social impacts for the life of the Project, from vegetation clearing to decommissioning. The development of the Tilenga Project will be phased. The first implementation phase will be the "Early works" activities to conduct preparatory works such as boundary marking and fencing, vegetation clearing, earthworks and also improve transport infrastructure that will be integral to the development of the Tilenga Project. It will be followed by project facilities construction, commissioning, operations prior to decommissioning.
Resettlement Action Plans (RAPs) to enable land acquisition for the project facilities are also being undertaken.
In line with National Environment Act (NEA), TEPU contracted Air Water Earth (AWE) Ltd. to conduct environmental studies and consultations with respective stakeholders to develop a Project Brief (PB) for Early works in respect to Oil and Gas Development and Production activities in CA1 and LA2.

## 02. Project Components

The following enabling infrastructure is covered in the PB:
i) Industrial area to locate the Central Processing Facility; construction camp (CC) and support base (CSB); operation camp (OC) and support base (OSB);
ii) Proposed new roads to bypass towns along the route to minimize interference and impact to local communities and also reduce travel time to the Industrial area and other key Project locations;
iii) Proposed road upgrades to enlarge roads to cater for anticipated Project traffic, and also provide suitable drainage on the roads;
iv) Airstrip upgrade to enable handling of expected increased traffic.

## ( total

## Scope of the Project Brief

The PB covers the following activities for the Project:
i) Boundary marking and fencing (Industrial area and airstrip upgrade);
ii) Earthworks including vegetation clearing, top soil removal, levelling, compaction (all components);
iii) Drainage works (Industrial area, airstrip and roads);
iv) Transportation of materials (e.g. murram);
v) Waste management (all components);

The PB is submitted to NEMA, who is responsible for its review and approval.

## 03. Project Purpose

The purpose of the Project is to undertake preparatory works for enabling infrastructure and facilities (Early works) necessary for Tilenga Project development.

## 04. Nature of Project according to NEA1995

Under the Third Schedule of the NEA, this Project is categorised under " $1(\mathrm{~b})$ - any structure of a scale not in keeping with its surroundings; 3 (b) all roads in scenic, wooded or mountainous areas, (d) airports and airfield; and 9 (I) chemical works and process plants".

## 05. Project Schedule

In order to meet the timelines for first oil in the year 2020, the early works must take place as soon as possible.
The proposed duration for the various components of the Early works is as follows:
i) Industrial area site preparation - 06 to 09 months;
ii) New Roads - 05 to 07 months;
iii) Upgrade Roads - 04 to 06 months;
iv) Bugungu airstrip - 07 months.

Early works are scheduled to start in the Second Quarter of 2018. Activities at the the above project components will overlap, with some taking place simultaneously. Early works activities at the Industrial area will overlap with the Tilenga construction activities; this will ensure no redundant time at the industrial area.

## 06. Site Organistion

Early works contractor personnel are planned to be accommodated in the existing Bugungu and Bulisa camps and would commute every day to the work sites. Most of the workers hired from the local communities are expected to reside at their homes and commute to the work sites.

## (1) Total

At the Industrial area, the site layout is anticipated to include as a minimum, sanitary facilities, offices, parking yard for heavy equipment and vehicles, warehouse, area to clean/maintain vehicles and equipment, and utilities and power generation as required. The proposed site organisation is temporary for the period of Early works.

## 07. Project Logistics

Trucks will be required to transport materials to site and waste off the site to designated areas or waste management facilities. Trucks will therefore transport incoming materials such as soil, gravel, fencing material, drainage construction material; as well as remove cleared bush, stripped top soil and excavated earth from drainage channels. An estimated 70 trucks will be required for the Early works, at an average movement of 04 trips per truck per day.

Equipment required will include 04 medium sized Excavator (for drainage works at Industrial area and roads), 05 Graders, 08 Loaders, 06 Bull dozer, 07 Light duty vehicles, 04 Shuttle bus, 03 Water bowser and 04 compaction Rollers,

## 08. Project Workforce

$100-500$ people will be engaged on site for the duration of the Early works.

## 09. Project Location

The study area covers the sub counties of Ngwedo, Buliisa, Kigwera and in particular parishes of Nile, Avogera, Mvule, Bugana, Kisansya, Kirama and Kigwera in Buliisa district (Figure-1). A total of 24 villages made up the study scope. The Bugungu airstrip is within Masindi district.

## 10. Next Phase of Tilenga Project

Completion of the Early works will enable commencement of the next phases of Tilenga Project (upon ESIA approval). Currently the project is in the Front End Engineering Design (FEED) stage, where all necessary technical definition and cost and schedule estimates are being developed to allow the JV Partners to make a recommendation for a Final Investment Decision (FID) expected as early as possible in 2018, and lead to the project execution and construction phase required to produce Uganda's Oil targeted by end 2020.


Figure -1: Project location, including the Administrative Boundaries

## Total

## 11. Study methodology

The environmental conditions of the project area of influence (project components and potential receptors) have been assessed by carrying out baseline surveys/studies; which are intended to provide a measure of existing environment and the socio-economic situation against which future changes due to the project implementation can be monitored. The baseline environment studies aid in assessing impacts and developing appropriate monitoring indicators and mitigation measures. Specialised activities included:
i. Air Quality;
ii. Ambient Noise;
iii. Soils and geology;
iv. Water resources;
v. Waste management;
vi. Biodiversity;
vii. Ecosystem services;
viii. Stakeholder consultations;
ix. Socio-economic conditions;
x. Cultural Heritage and Archaeology;
xi. Landscape and Visual Aesthetics.

## 12. Stakeholder Consultations

Stakeholder consultations were held for the Project, as listed in Table ES 01.
Table ES01: List of stakeholders engaged

| Category | Stakeholder |
| :--- | :--- |
| National level institutions | Ministry of Energy and Mineral Development |
|  | Petroleum Authority of Uganda (PAU), in Ministry of Energy \& Mineral <br> Development |
|  | Petroleum Exploration, Development and Production Department, in <br> Ministry of Energy \& Mineral Development |
|  | National Environment Management Authority (NEMA) |
|  | Directorate of Water Resources Management (DWRM) in Ministry of <br> Water \& Environment |
|  | Occupational Health \& Safety Department in Ministry of Gender, <br> Labour \& Social Development |

## (1) TоtAl

| Category | Stakeholder |
| :---: | :---: |
|  | Social Protection Department in the Ministry of Gender, Labour and Social Development |
|  | Gender and Community Development Department in the Ministry of Gender, Labour and Social Development |
|  | Department responsible for museums and monuments in the Ministry Tourism Wildlife and Antiquities |
|  | Department of Land Administration in the Ministry of Lands, Housing and Urban Development |
|  | Department of Urban Development in the Ministry of Lands, Housing and Urban Development |
|  | Uganda Wildlife Authority (UWA) |
|  | Uganda National Roads Authority (UNRA) |
|  | Civil Aviation Authority |
| Buliisa District Local Government | LC V, Chief Admninistration Officer (CAO), Assistant CAO, Speaker, Community Development Officer (CDO), Environment Officer, Community Liaison Officer, |
| Sub-counties in the Project Area | LC III, SAS/Chief, Councillors, Sub-accountants in Buliisa, Kigwera, Ngwedo and \Buliisa Town Council |
| Local Councils | Kasinyi, Kisomere, Kilyango, Avogera, Kamandindi, Uduk I, Ajigo, Ngwedo Central, Kibambura, Gotlyech, Uriibo, Kichoke-Bugana, Kijumbya, Kijangi, Kizikya, Kigwera SE \& NE, Bikongoro, Kirama, Kiyere |
| Civil Society | Civil Society Coalition on oil and gas (CSCO) |

## 13. Potential impacts identified

The potential environmental and social impacts that may arise due to implementation of the various components of the Early works project and proposed mitigation recommendations are discussed in detail in this PB. A summary of impacts and the residual impacts significance is provided in Table ESO2.

## (1) Total

Table ES02: Residual Impacts

| Potential Impact | Impact significance (after mitigation) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Industrial area | Roads construction | Airstrip upgrade | Material sourcing |
| Impact on Air Quality |  |  |  |  |
| Dust Generation | Minor | Minor | Minor | Minor |
| Exhaust emissions | Minor | Minor | Minor | Minor |
| Impact on Noise and Vibration | Minor | Minor | Minor | Minor |
| Impact on Soils and Geology |  |  |  |  |
| Soil erosion | Minor | Minor | Minor | Minor |
| Soil quality | Minor | Minor | Minor | Minor |
| Soil compaction | Minor | Minor | Minor | Minor |
| Impact on Water Resources |  |  |  |  |
| Water quality | Minor | Minor | Minor | Minor |
| Water quantity | Minor | Minor | Minor | Negligible |
| Hydrology | Minor | Minor | Minor | Minor |
| Impact on Biodiversity |  |  |  |  |
| Loss of habitat | Moderate | Minor | Moderate | Minor |
| Disturbance to fauna | Minor | Minor | Minor | Negligible |
| Human Wildlife Conflict | Negligible | Negligible | Minor | Minor |
| Impact on socio-economic conditions |  |  |  |  |
| Benefit to national economy | Benefit | Benefit | Benefit | Benefit |
| Improvement of road network in Project area | Benefit | Benefit | Benefit | Benefit |
| Tourism growth from the improved Bugungu airstrip | Benefit | Benefit | Benefit | Benefit |
| Employment | Benefit | Benefit | Benefit | Benefit |
| Income from material/equipment suppliers and contractors | Benefit | Benefit | Benefit | Benefit |
| Involuntary resettlement, physical and consequential displacement | Moderate | Moderate | Not Applicable | Negligible |
| Impact on food security | Moderate | Moderate | Not Applicable | Negligible |
| Pressure on social infrastructure and services | Minor | Minor | Not Applicable | Minor |
| Pressure on available natural resources | Moderate | Moderate | Not Applicable | Moderate |
| Increase in social tensions / pressure on health and security | Minor | Minor | Not Applicable | Minor |
| Impact on archaeology and cultural heritage | Minor | Minor | Negligible | Negligible |
| Impact on landscape and visual | Minor | Minor | Minor | Minor |

## Total

| Potential Impact | Impact significance (after mitigation) |  |  |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Industrial area | Roads <br> construction | Airstrip upgrade | Material sourcing |
| aesthetics |  |  |  |  |

Residual impacts are negligible, minor or moderate; the latter being tolerable in consideration of mitigation measures that will minimise the impact to as low as reasonably practicable.

## 14. Cumulative Impacts

Cumulative impacts are socio-economic and environment effects which result from incremental impact of the project when added to other past, present, and reasonably foreseeable future actions. These will be assessed and included as part of the Tilenga Project ESIA. This PB has only considered cumulative impacts associated with additional road programmes known to take place in parallel to Early works.

## 15. Environmental and Social Management Plan

TEPU has a Company Management System (CMS) which governs all of its operations. A number of overarching plans and procedures are in place, or planned to be developed which address environmental and social aspects for the operations programme as a whole. These have been referred to where appropriate in this PB, and form part of the management regime under which the proposed project will be undertaken.

The ESIA process reported in this PB has outlined the need for additional, project-specific mitigation measures to ensure that the project is completed with the minimum adverse environmental and social impact.

The project Environmental and Social Management Plan (ESMP) incorporates both the operations-wide documents and the project-specific measures identified by the PB. The project-specific measures provided in the ESMP are designed to be comprehensive and implementable. The ESMP also includes monitoring measures designed to ensure that compliance with the plans can be checked and recorded during implementation, and assign responsibility for these actions.

## (1) Total

## 16. Conclusion

The Early works for the Tilenga Project are aimed at facilitating the progress of the required infrastructure for the overall Tilenga project development towards meeting the Government of Uganda (GoU) and JV Partners target of first oil in the year 2020. Implementation of the Early works include preparation works at the Industrial area (boundary marking and fencing, earthworks, drainage works), new roads, roads upgrade and Bugungu airstrip upgrade.

The ESMP in this PB has made consideration of the environmental and social safeguards required for the sustainable development and completion of the Early works activities. With the implementation of these safeguards as part of the Early works Project implementation, the potential adverse impacts of these activities will be mitigated to as low as reasonably practicable, and the positive impacts enhanced.

The Tilenga ESIA (ongoing) will cover all Project components and address potential environmental and social impacts for the life of the Project, from vegetation clearing to decommissioning. Resettlement Action Plans are also being developed for the Project. The mitigation measures proposed for the Early works in this PB will be reflected in both RAP and Tilenga ESIA.

This report has been updated as per the concerns from the various stakeholders and NEMA (letter dated $14^{\text {th }}$ December, 2017 with Ref: NEMA/4.5, here attached) in relatation to the earlier submitted Project Brief received by NEMA on 18 ${ }^{\text {th }}$ September 2017. A reponse matrix was developed in relation to the update.

# Geotechnical Project Brief for Enabling Infrastructure - Executive Summary November 2017 

## GEOTECHNICAL SURVEYS FOR THE ENABLING INFRASTRUCTURE

## PROJECT BRIEF



By:

AIR WATER EARTH (AWE)
M1, 27 Binayomba Road, Bugolobi
PO Box 22428, Kampala
Office T: +256-41-4268466
M: +256-78-2580480/ 077-2496451
E: mail@awe-engineers.com
W: www.awe-engineers.com


## EXECUTIVE SUMMARY

## 01. Background

In an effort to meet the Government of Uganda (GoU) target of first oil in the year 2020, GoU awarded production licenses to Total Exploration and Production Uganda B.V. (TEPU) and its two joint venture partners; Tullow Uganda Operations Pty Ltd. (TUOP) and CNOOC Uganda Limited (CUL) in 2012 to CUL and in 2016 to TEPU and TUOP to develop and operate upstream petroleum facilities in the Albertine Graben.

TEPU has been licensed to develop oil wells in Contract Area 1 (CA1), while TUOP is licensed to develop those in Licence Area 2 (LA2). The Tilenga project is being developed by the Joint Venture (JV) Partners. Tilenga is the project name for the development of petroleum production facilities in CA1 and the Northern part of the LA2 located in Buliisa and Nwoya Districts in Uganda. The name Tilenga is derived from the 2 local names for the Uganda Kob (Antelop), called Til in Acholi and Engabi in Lugungu.

Before first oil is realised, there is a need for development of upstream facilities, considering the nascence of Uganda's oil industry. The Tilenga upstream facilities to be developed are comprised of:
i) The well pads and the upstream gathering network;
ii) The Industrial area, comprising a Central Processing Facility (CPF), Construction camp (CC) and Support Base (CSB); Operation Camp (OC) and Support Base (OSB);
iii) Nile River crossing to connect the fields in Murchison Falls National Park (MFNP) to the CPF;
iv) A water abstraction facility adjacent to Lake Albert with associated abstraction line;
v) Development of staging area, new roads, upgrade of existing roads, bridges and airstrip; and
vi) Barge crossing on Victoria Nile.

The development of these facilities requires having the required enabling infrastructure in place. The enabling infrastructure scope is the initial phase and involves works that have been identified as critical in supporting construction works. The engineering of the project is currently being undertaken. A thorough and comprehensive geotechnical site investigation for the project facilities is an essential preliminary to the engineering design and construction of the enabling works infrastructure.

In line with National Environment Act (NEA), TEPU contracted Air Water Earth (AWE) Ltd. to conduct environmental studies and consultations with respective stakeholders to develop a Project Brief (PB) for geotechnical site investigations at proposed locations for the enabling infrastructure within CA-1, LA-2 and Masindi District.

## 02. Geotechnical Survey Techniques

The different geotechnical investigation techniques, will take place during daylight hours. The potential techniques to be used are described as follows:

- Core drilling with sampling
- Standard Penetration Test (SPT)
- Cone Penetration Test (CPT)


## Total

- Trial pits

Some clearance of vegetation might be required to access the worksite and within the investigation perimeter. However, there is no need for cutting of trees or dense thickets; in-situ investigations will be designed to avoid such features.

## 03. Scope of the Project Brief

The PB covers the following activities for the Project activities:
i) Present baseline data on the physical, biological and socio-economic setting of the proposed project area;
ii) Predict and evaluate potential environmental and social impacts as well as benefits likely to result from the proposed project;
iii) Identify feasible and cost-effective mitigation measures for significant impacts identified; and
iv) Facilitate the preparation of an Environmental and Social Management Plan (ESMP) to ensure effective environmental and social management of the project during implementation.

## 04. Project Purpose

The purpose of the geotechnical survey is:
i) Characterize the nature of the ground and groundwater;
ii) Confirm lithology and thickness of subsurface layers;
iii) Provide physical and geomechanical properties of soils required for design of the infrastructures;
iv)Locate \& characterize potential hazards along the planned project infrastructures; and
v) Provide recommendations for the geotechnical design of the infrastructures.

## 05. Nature of Project according to NEA1995

Under the Third Schedule of the NEA, this Project is categorised under "1(a) - an activity out of character with its surroundings".

## 06. Project Schedule

The proposed start for geotechnical surveys is during the fourth quarter of 2017 for a duration of two and half months; subject to NEMA approval of the Geotechnical Surveys Project Brief.

## 07. Site Organisation

Geotechnical survey contractor personnel are planned to be accommodated in the existing Bugungu and Buliisa camps, while most of the workers hired from the local communities are expected to reside at their homes and commute to the work sites.

## 08. Project Logistics

Equipment required during the geotechnical surveys will include:
i) Geotechnical Drill rig - for Core drilling
ii) Penetrometer - used during the CPT
iii) A flatbed truck - transporting the drill rig and penetrometer
iv) Hydraulic backhoe - to excavating the Trial pits
v) 2 Light Vehicles - for transporting Personnel

## (1) Total

vi) One $4^{*} 4$ truck - transporting drill rig
vii) Water tanker - to delivering water to the survey site

## 09. Project Workforce

The geotechnical surveys will be undertaken using a small technical team of about 15 people. Thegeotechnical survey personnel will be accomodated at the TEPUBugungu Camp and/or at nearby lodges/guesthouses. Four to five light vehicles will be used per crew for transportation of personnel to and from the survey locations. In the event that casual laborers are required, TEPU's Community Employment Procedures (L2-PRO-SDV-01) will guide the recruitment process and the contractor will be urged to adhere to TEPU'ssystem for social justice regard.

## 10. Project Location

The geotechnical surveys will be undertaken for enabling infrastructure components located in the Districts of Nwoya, Buliisa and Masindi. Thus the study area covers the sub counties of Ngwedo, Buliisa, Kigwera and in particular parishes of Nile, Avogera, Mvule, Bugana, Kisansya, Kirama and Kigwera in Buliisa district. In Masindi District the study area covers, Bugungu airstrip is within MFNP and the parish of Labongo in Pakanyi Sub County, while in Nwoya District, the study area is within the MFNP. A total of 24 villages made up the baseline study scope. The project components where the geotechnical surveys will be undertaken are illustrated in Figure 1-1
(1) TOTAL


Figure 1-1: Geotechnical Survey locations Nwoya and Buliisa District
(Total


Figure 1-2: Geotechnical Survey locations in Masindi District

## (1) Total

## 11. Study methodology

The environmental conditions of the project area of influence have been assessed by carrying out baseline surveys/studies; which are intended to provide a measure of existing environment and the socio-economic situation against which future changes due to the project implementation can be monitored. The baseline environment studies aid in assessing impacts and developing appropriate monitoring indicators and mitigation measures. Specialised activities included:
i) Air Quality;
ii) Ambient Noise;
iii) Soils and geology;
iv) Water resources;
v) Waste management;
vi) Biodiversity;
vii) Stakeholder consultations;
viii) Socio-economic conditions;
ix) Cultural Heritage and Archaeology; and
x) Landscape and Vibrations.

## 12. Stakeholder Consultations

Stakeholder consultations were held for the Project, as listed in Table ES 01.
Table ES01: List of stakeholders engaged

| Category | Stakeholder |
| :---: | :---: |
| National Level institutions | Directorate of Water Resources Management (DWRM) in Ministry of Water \& Environment |
|  | Department responsible for museums and monuments in the Ministry Tourism Wildlife and Antiquities |
|  | Wetlands Management Directorate, Ministry of Water and Environment |
|  | Uganda Wildlife Authority (UWA) |
|  | Uganda National Roads Authority (UNRA) |
| Bulisa, Nwoya and Masindi District Local Governments | LC V, Chief Administration Officer (CAO), Assistant CAO, Speaker, Community Development Officer (CDO), Environment Officer, Community Liaison Officer, |
| Sub-counties in the Project Area | LC III Chairman, Subcounty Chief, Councillors, Sub-accountants in Buliisa, Kigwera, Ngwedo and Buliisa Town Council for Buliisa. <br> Pakanyi and Purong sub-counties for Masindi and Nwoya Districts respectively |
| Local Councils | Kizongi, Kwamugwera and Purongo in Buliisa, Masindi and Mwoya respectively |

## Q total

## 13. Potential impacts identified

The potential environmental and social impacts that may arise due to implementation of the geotechnical surveys and proposed mitigation recommendations are discussed in detail in this Project Brief. A summary of impacts and the residual impacts significance is provided in Table ESO2.
Table ES02: Residual Impacts

| Potential Impact | Impact significance (after mitigation) |  |
| :---: | :---: | :---: |
|  | Murchison Falls | Community Areas |
| Impact on Air Quality |  |  |
| Dust Generation | Negligible | Negligible |
| Exhaust emissions | Negligible | Minor |
| Impact due to Noise | Minor | Minor |
| Impact due to Vibration | Minor | Minor |
| Impact on Soils and Geology |  |  |
| Soil erosion | Minor | Minor |
| Soil quality | Negligible | Minor |
| Impact on Water Resources |  |  |
| Water quality | Minor | Negligible |
| Water quantity | Negligible | Negligible |
| Impact on Flora |  |  |
| Loss of vegetation | Negligible | Negligible |
| Spread of Invasive species | Moderate | Negligible |
| Impact on Fauna |  |  |
| Disturbance to wildlife | Negligible | Negligible |
| Impact on socio-economic conditions |  |  |
| Employment and skills training | Benefit | Benefit |
| Income to geotechnical survey contractors | Benefit | Benefit |
| Access to land | Minor | Minor |
| Influx of labour in the area | Minor | Minor |
| Disruption of land-based livelihoods | Minor | Minor |
| Impact on archaeology and cultural heritage | Negligible | Negligible |
| Impact on landscape and visual aesthetics | Minor | Minor |

## ( Total

## 14. Cumulative Impacts

Cumulative impacts are socio-economic and environment effects which result from incremental impact of the project when added to other past, present, and reasonably foreseeable future actions. This PB has considered cumulative impacts associated with ongoing geotechnical surveys by TEPU and Uganda National Roads Authority (UNRA) recently completed for some of the roads in the project area. The assessed cumulative impacts associated with past, proposed and foreseeable future activities proposed in the project area include:
i) Employment and contribution to economic growth;
ii) Water resources impacts (both quality and quantity); and
iii) Noise, vibration and air quality impacts.

## 15. Environmental and Social Management Plan

The project Environmental and Social Management Plan (ESMP) incorporates both the operations-wide documents and the project-specific measures identified by the PB. The project-specific measures provided in the ESMP are designed to be comprehensive and implementable. The ESMP also includes monitoring measures designed to ensure that compliance with the plans can be checked and recorded during implementation, and assign responsibility for these actions.

TEPU has a Company Management System (CMS), which governs all of its operations. A number of over-arching plans and procedures are in place, or planned to be developed which address environmental and social aspects for the operations programme as a whole. These have been referred to where appropriate in this PB, and form part of the management regime under which the proposed project will be undertaken.

The ESIA process reported in this PB has outlined the need for additional, project-specific mitigation measures to ensure that the project is completed with the minimum adverse environmental and social impact.

## 16. Conclusion

The geotechnical surveys are aimed at facilitating the design of the required infrastructure for the overall Tilenga project development towards meeting the Government of Uganda (GoU) target of first oil in the year 2020.

The ESMP in this PB has made consideration of the environmental and social safeguards required for the sustainable development and completion of the geotechnical survey activities. With the implementation of these safeguards as part of the geotechnical survey activities, the potential adverse impacts of these activities will be mitigated, and the positive impacts enhanced.


[^0]:    ${ }^{1}$ Atacama 2014

[^1]:    ${ }^{2}$ Atacama 2014. Project Brief: Proposes Geophysical and Geotechnical Survey sin EA2, Sept 2014

